Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Ta có:}2;6;10;...;8010\text{ đều chia 4 dư 2}\)
\(\Rightarrow X\equiv2^2+3^2+4^2+....+2004^2\left(mod\text{ }10\right)\)
\(\text{ mà:}1^2+2^2+3^2+....+2004^2=\frac{2004.2005.4009}{6}=333.2005.4009\)
\(\Rightarrow X\equiv333.2005.4009-1\left(\text{mod 10}\right)\equiv3.5.9-1\equiv4\left(\text{mod 10}\right)\)
Vậy X có chữ số tận cùng là 4
\(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2^{10}-1}\)
\(< 1+\frac{1}{2}+\frac{1}{2}+\left(\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}\right)+..........\left(\frac{1}{2^9}+\frac{1}{2^9}+....+\frac{1}{2^9}\left(\text{512 số hạng }\frac{1}{2^9}\right)\right)\)
\(=1+1+1+1+1+1+1+1+1+1\)
\(=10\left(\text{điều phải chứng minh}\right)\)
\(\text{bài 2 câu b tương tự câu a}\)
Đặt \(A=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2004}\right)\)
\(A=\left(\dfrac{2}{2}-\dfrac{1}{2}\right).\left(\dfrac{3}{3}-\dfrac{1}{3}\right)....\left(\dfrac{2003}{2003}-\dfrac{1}{2003}\right).\left(\dfrac{2004}{2004}-\dfrac{1}{2004}\right)\)
\(A=\dfrac{1}{2}.\dfrac{2}{3}...\dfrac{2002}{2003}.\dfrac{2003}{2004}\)
\(A=\dfrac{1.2.3...2002.2003}{2.3....2003.2004}\)
\(A=\dfrac{1}{2004}\)
\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)..............\left(1-\dfrac{1}{2004}\right)\)
\(=\left(\dfrac{2}{2}-\dfrac{1}{2}\right)\left(\dfrac{3}{3}-\dfrac{1}{3}\right)...........\left(\dfrac{2004}{2004}-\dfrac{1}{2004}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}.............\dfrac{2003}{2004}\)
\(=\dfrac{1}{2004}\)
a/ (ghi lại cái đề)
=>+ 3x-7=2
3x=2+7=9
x=3
+ 3x-7=-2
3x=-2+7=5
x=\(\frac{5}{3}\)
b/ (5x-10)2=100
=> +5x-10=10
5x=10+10=20
x=4
+ 5x-10=-10
5x=-10+10=0
x=0
B= 1/2 x 2/3 x 3/4 x ...........x 2002/2003 x 2003/2004
1 x 2 x 3 x 4 x .............x 2002 x 2003
2 x 3 x 4 x .............x 2003 x 2004
1
2004