Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a; b cách làm tương tự nhau. Bạn xem câu ở câu hỏi tương tự: http://olm.vn/hoi-dap/question/89869.html
c) đề bài cho [a;b] + (a;b) = 15
gọi d = (a;b) => a = d.m; b = d.n ( coi m < n và m; n nguyên tố cùng nhau)
Ta có: [a;b] = \(\frac{a.b}{d}=\frac{dm.dn}{d}=d.m.n\)
khi đó, d.mn + d = 15 => d(m.n + 1) = 15 => m.n + 1 \(\in\) Ư(15) mà m.n + 1 > 2
=> m.n + 1 \(\in\) {3;5;15}
+) m.n + 1 = 3 => m.n = 2 = 1.2 => m = 1; n = 2 và d = 5 => a = 5.1 = 5; b = 5.2 = 10
+) m.n + 1 = 5 => m.n = 4 = 1.4 => m = 1; n = 4 và d = 3 => a = 3.1 = 3; b = 3.4 = 12
+) m.n + 1 = 15 => m.n = 14 =1 .14 = 2.7
m =1; n = 14 ; d = 1 => a= 1; b = 14
m = 2; n = 7 ;d = 1 => a = 2; b = 7
Vậy....
- Gọi d là ước chung lớn nhất của n và n + 2
=> n chia hết d và n + 2 chia hết d
=> ( n + 2 ) - n chia hết d
=> 2 chia hết d
=> d = 1 hoặc 2
Nếu n lẻ => d = 1
Nếu n chẵn => d = 2
Vậy ước chung lớn nhất của n và n + 2 là 1 hoặc 2
Ta có : Nếu ước chung lớn nhất của n và n + 2 = 1
thì bội chung nhỏ nhất của n và n +2 = n(n+2)
Nếu ước chung lớn nhất của n và n +2 là 2
thì bội chung nhỏ nhất của n và n +2 = n(n+2) : 2
Làm như thế này có đúng không vậy ?
a)45 = 32.5
204 = 22.3.17
126 = 2.32.7
=> UCLN(a;b;c) = 3
b)có BCNN(a;b;c) = 22.32.5.7.17 = 21420
=>BCNN:UCLN=21420:3=7140
=> BCNN chia hết cho UCLN
HT
1)a chia hết cho b thì b là ước của a
a chia hết cho b thì b là bội của a.
2)Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lược cho 1, 2, 3, …
3)Ta có thể tìm các ước của một số a (a > 1) bằng cách lần lược chia số a cho số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.
4)Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước là 1 và chính nó.
5)Ước chung của hai hay nhiều số là ước của tất cả các số đó.
6) Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
- Bước 2: Chọn ra các thừa số nguyên tố chung.
- Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN phải tìm.
7)ƯCLN của hai hay nhiều số là số lơn nhất trong tập hợp ước chung
9)Bội chung của hai hay nhiều số là bội của tất cả các số đó.
10
1)a chia hết cho b thì b là ước của a
a chia hết cho b thì b là bội của a.
2)Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lược cho 1, 2, 3, …
3)Ta có thể tìm các ước của một số a (a > 1) bằng cách lần lược chia số a cho số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.
4)Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước là 1 và chính nó.
5)Ước chung của hai hay nhiều số là ước của tất cả các số đó.
6) Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
- Bước 2: Chọn ra các thừa số nguyên tố chung.
- Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN phải tìm.
7)ƯCLN của hai hay nhiều số là số lơn nhất trong tập hợp ước chung
9)Bội chung của hai hay nhiều số là bội của tất cả các số đó.
10
Ta có: UCLN(a;b) = 15 => a = 15m và b = 15n (Với m ; n khác 0)
Ta lại có: BCNN(a;b) = 300
Mà: a . b = BCNN(a;b) . UCLN(a;b)
=> a . b = 300 . 15 = 4500 (*)
Ta thay a = 15m và b = 15n vào (*) ta được: 15m . 15n = 4500
=> 225 . mn = 4500 => mn = 4500 : 225 => mn = 20
Do: m và n là sso tự nhiên nên mn = 4 . 5 = 1 . 20
+) Với m = 4 và n = 5 thì a = 60 và b = 75
+) Với m = 5 và n = 4 thì a = 75 và b = 60
+) Với m = 1 và n = 20 thì a = 15 và b = 300
+) Với m = 20 và n = 1 thì a = 300 và b = 15
Ta có : ƯCLN ( a , b ) = 15 => a = 15m và b = 15n ( m ; n \(\ne\) 0 ).
Ta lại có : BCNN ( a ; b ) = 300
Mà a . b = BCNN ( a ; b ) . ƯCLN ( a ; b )
=> a . b = 300 . 15 = 4500 (*)
Thay a = 15m và b = 15n vào (*) ta được :
15m . 15n = 4500
<=> ( 15 . 15 ) mn = 4500
<=> 225mn = 4500
<=> mn = 4500 : 225
<=> mn = 20
Do m và n là số tự nhiên nên mn = 4 . 5 = 1 . 20
=> Ta có bảng :
m | 4 | 5 | 1 | 20 |
n | 5 | 4 | 20 | 1 |
a | 60 | 75 | 15 | 300 |
b | 75 | 60 | 300 | 15 |
Hại não @@~