Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ước chung của n+3 và 2n+5
Ta có n+3\(⋮\) d và 2n+5 \(⋮\)d
Suy ra (2n+6)-(2n+5)\(⋮\) d \(\Rightarrow\) 1\(⋮\)d
Vậy d=1
Gọi d là ước chung của n + 3 và 2n + 5.
Ta có n + 3 ⋮ d và 2n + 5 ⋮ d.
Suy ra (2n + 6) - (2n + 5) ⋮ d ⇒
1 ⋮ d.
Vậy d = 1.
1. Gọi d là ước số chung của n+3 và 2n+5, d,n C N. Khi đó 2(n+3)-(2n+5) chia hết cho d hay 1 chia hết cho d, vậy d=1 hay 2 số n+3 và 2n+5 là 2 số nguyên tố cùng nhau
2. Nếu d là USC của n+1 và 2n+5 thì (2n+5)-2(n+1) chia hết cho d hay 3 chia hết cho d, vậy d=1 hoặc 3 do đó số 4 không thể là USC của 2 số n+1 và 2n+5
Gọi ƯC(n+3;2n+5) là d
Ta có:
\(\left\{{}\begin{matrix}\left(n+3\right)⋮d\\\left(2n+5\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2.\left(n+3\right)⋮d\\\left(2n+5\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2n+6⋮d\\2n+5⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow\) \(\left(2n+6-2n-5\right)⋮d\)
\(\Rightarrow\) 1 \(⋮\)d
\(\Rightarrow\) d = 1
Vậy ước chung của 2 số n + 3 và 2n + 5 là 1
Gọi \(UC_{\left(n+3;2n+5\right)}=d\left(d\in N\right).\)
\(\Rightarrow\left\{{}\begin{matrix}n+3⋮d.\\2n+5⋮d.\end{matrix}\right.\)
\(\Rightarrow\left(n+3\right)-\left(2n+5\right)⋮d.\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d.\)
\(\Rightarrow1⋮d.\)
mà \(d\in N.\)
\(\Rightarrow d=1.\)
Vậy \(UC_{\left(n+3;2n+5\right)}=1.\)
1. Gọi d là ước chung của n+3 và 2n+5
Ta có: n+3 \(⋮\)d , 2n+5\(⋮d\)
=> (2n+6)-(2n+5) chia hết cho d=> 1 chia hết cho d
Vậy ƯC của n+3 và 2n+5 là 1
2. giả sử 4 là ƯC của n+1 và 2n+5
Ta cs: n+1 \(⋮\)4 , 2n+5\(⋮\)4
=> (2n+5)-(2n+2) chia hết cho 4=> 3 chia hết cho 4(vô lý)
Vậy số 4 không thể là ƯC của n+1 và 2n+5.
Bạn ghét những đứa đặt tên dài, cậu có thể giải thích tại sao ở câu 1, n + 3=2n+6 được chứ, cả câu 2 n+1=2n+5 nữa. Cảm ơn!
Gọi d là ƯSC của n + 3 và 2n + 5
=> n + 3 chia hết cho d => 2(n + 3)=2n+6 cũng chia hết cho d
=> 2n + 5 chia hết cho d
=> 2(n +3) - (2n + 5) = 1 chia hết cho d => d=1
1) gọi d là UC của n+3 và 2n+5
=> d là ước của 2(n+3) = 2n+6 = 2n+5 + 1
mà d là ước của 2n+5 => d là ước của 1 => d = 1
Đặt ( n+3 ; 2n+5) = d
=> \(n+3⋮d\Rightarrow2.\left(n+3\right)⋮d\)(1)
=> \(2n+5⋮d\)(2)
Từ (1) và (2) => \(2.\left(n+3\right)-2n+5⋮d\)
=>\(2n+6-2n-5⋮d\)
=> \(1⋮d\)
vậy UCLN(n+3; 2n+5)=1