K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2023

Ta có: \(n^5+n^4+1\)

\(=n^5-n^3+n^2+n^4-n^2+n+n^3-n+1\)

\(=n^2\left(n^3-n+1\right)+n\left(n^3-n+1\right)+\left(n^3-n+1\right)\)

\(=\left(n^3-n+1\right)\left(n^2+n+1\right)\) 

Do \(n^5+n^4+1\) là số nguyên tố nên: \(\left[{}\begin{matrix}n^3-n+1=1\\n^2+n+1=1\end{matrix}\right.\)  trong hai số phải có 1 số là 1 và số còn lại là số nguyên tố:

TH1: \(n^3-n+1=1\)

\(\Leftrightarrow n^3-n=0\)

\(\Leftrightarrow n\left(n^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}n=0\\n=1\\n=-1\end{matrix}\right.\)

Với 

\(n=0\Rightarrow0^5+0^4+1=1\) (loại)

\(n=1\Rightarrow1^5+1^4+1=3\) (nhận)

\(n=-1\Rightarrow\left(-1\right)^5+\left(-1\right)^4+1=1\) (loại)

TH1: \(n^2+n+1=1\)

\(\Leftrightarrow n^2+n=0\)

\(\Leftrightarrow\left[{}\begin{matrix}n=0\\n=-1\end{matrix}\right.\left(\text{loại}\right)\)

Vậy \(n=1\) là số thỏa mãn để \(n^5+n^4+1\) là số nguyên tố 

15 tháng 10 2019

Hình như là đề bài thiếu rồi ạ. Nếu chỉ cho đk như vậy thì sao tìm đc n ạ???

15 tháng 10 2019

Dạ .. Sửa đề rồi nhé :33

19 tháng 5 2020

Bài làm:

Vì n và 40 là 2 SNT cùng nhau => n và 10 là 2 SNT cùng nhau

=> n sẽ không chia hết cho 2 hoặc 5

=> n là số lẻ

Đặt n = 2k+1 (k là số tự nhiên)

=> n4-1 = (n2-1)(n2+1) = (n-1)(n+1)(n2+1)

Thay n = 2k+1 vô ta được: (2k+1-1)(2k+1+1)(4k2+4k+1+1)

= 2k(2k+2)(4k2+4k+2)

= 8k(k+1)(2k2+2k+1) chia hết cho 8

=> n4-1 chia hết cho 8 (1)

Ta lại đặt n = 5k+1 (k lẻ)

=> n4-1 = (n+1)(n-1)(n2+1) = (5k+1-1)(5k+1+1)(25k2+10k+1)

= 5k(5k+2)(25k2+10k+1) chia hết cho 5

=> n4-1 chia hết cho 5 (2)

Từ (1) và (2) => \(n^4-1⋮8.5=40\)

Vậy \(n^4-1⋮40\)

Mk k chắc bài mk làm đúng nhé!