K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2018

chỗ phân số thiếu tử thì điền tử bằng 1 nha

17 tháng 1 2018

dùng sai phân cuối cùng ra:

1- 1/n+3 = n+2 / n+3

17 tháng 7 2018

Đặt A là biểu thức của đề bài.

Ta có: 3/ 1.2.3.4 = 1/ 1.2.3 -1/ 2.3.4

          3/ 2.3.4.5 = 1/ 2.3.4 -1/ 3.4.5

          3/ n(n+1)(n+2)(n+3) = 1/ n(n+1)(n+2) -1/ (n+1)(n+2)(n+3)

Do đó: 3A = 1/ 1.2.3 -1/ 2.3.4 + 1/ 2.3.4 - 1/ 3.4.5 +...+ 1/ n(n+1)(n+2) - 1/ (n+1)(n+2)(n+3)

3A = 1/ 1.2.3 - 1/ (n+1)(n+2)(n+3)

3A = 1/6 - 1/ (n+1)(n+2)(n+3)

A = 1/18 - 1/ 3(n+1)(n+2)(n+3)

Đó là kết quả rút gọn. Chúc bạn học tốt.

17 tháng 7 2018

Đặt \(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{n.\left(n+1\right).\left(n+2\right).\left(n+3\right)}\)

\(\Rightarrow3A=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+\frac{3}{3.4.5.6}+...+\frac{3}{n.\left(n+1\right).\left(n+2\right).\left(n+3\right)}\)

\(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{n.\left(n+1\right).\left(n+2\right)}-\frac{1}{\left(n+1\right).\left(n+2\right).\left(n+3\right)}\)

\(3A=\frac{1}{1.2.3}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)

\(A=\frac{\frac{1}{1.2.3}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}}{3}\)

B tự làm nốt nhé

Bài này áp dụng công thức:

 \(\frac{a}{b.c.d.e}=\frac{1}{b.c.d}-\frac{1}{c.d.e}\)( đk: \(e-b=a\))

18 tháng 7 2018

\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)

\(3A=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)

\(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)

\(3A=\frac{1}{6}-\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)

\(3A=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)-6}{6\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)

=>\(A=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)-6}{18\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\frac{n^3+3n^2+3n^2+9n+6-6}{18\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\frac{n^3+6n^2+9n}{18\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)

5 tháng 5 2017

a) \(3\left(5-4n\right)+\left(27+2n\right)>0\)

\(\Leftrightarrow15-12n+27+2n>0\)

\(\Leftrightarrow42-10n>0\)

\(\Leftrightarrow-10n>-42\Leftrightarrow n< 4,2\)

Vậy \(S=\left\{n|n< 4,2\right\}\)

b) \(\left(n+2\right)^2-\left(n-3\right)\left(n+3\right)\le40\)

\(\Leftrightarrow n^2+4n+4-n^2+9\le40\)

\(\Leftrightarrow4n+13\le40\)

\(\Leftrightarrow4n\le27\Leftrightarrow n\le6,75\)

Vậy \(S=\left\{n|n\le6,75\right\}\)

13 tháng 6 2016

Tất cả các đẳng thức trên đều được chứng minh theo phương pháp quy nạp

Đặt n = k thì có đẳng thức

Chứng minh rằng n = k+1 cũng đúng ( vế trái (k+1) = vế phải (k+1) )

13 tháng 6 2016

thi giai ra luon dj

26 tháng 9 2019

phân tích đa thức thành nhân tử

26 tháng 9 2019

 Lan nghĩ ra một số biết rằng số đó bằng hiệu của số chẵn lớn nhất có 3 chữ số chẵn khác nhau với 60 rồi cộng thêm 21. Hỏi số lan nghĩ là số nào

9 tháng 4 2017

Bài 2: 

A = (a+b)(1/a+1/b)

Có: \(a+b\ge2\sqrt{ab}\)

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)

=> \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4\)

=> ĐPCM

11 tháng 4 2018

1.b)

Pt (1) : 4(n + 1) + 3n - 6 < 19
<=> 4n + 4 + 3n - 6 < 19 
<=> 7n - 2 < 19
<=> 7n - 2 - 19 < 0
<=> 7n - 21 < 0
<=> n < 3
Pt (2) : (n - 3)^2 - (n + 4)(n - 4) ≤ 43
<=> n^2 - 6n + 9 - n^2 + 16 ≤ 43
<=> -6n + 25 ≤ 43
<=> -6n ≤ 18
<=> n ≥ -3
Vì n < 3 và n ≥ -3 => -3 ≤ n ≤ 3.
Vậy S = {x ∈ R ; -3 ≤ n ≤ 3}

4 tháng 10 2018

Ta có :

\(1-\frac{3}{n\left(n+2\right)}=\frac{n^2+2n-3}{n\left(n+2\right)}=\frac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)

\(\Rightarrow A=\frac{1.5}{2.4}.\frac{2.6}{3.5}...\frac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)

\(=\left(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{n-1}{n}\right)\left(\frac{5}{4}.\frac{6}{5}.\frac{7}{6}...\frac{n+3}{n+2}\right)\)

\(=\frac{1}{n}.\frac{n+3}{4}=\frac{n+3}{n}.\frac{1}{4}\ge\frac{1}{4}\left(dpcm\right)\)