K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
31 tháng 3 2022

Đặt \(5^x+12^x=y^2\)

Ta có: \(y^2\equiv5^x+12^x\left(mod3\right)\equiv5^x\left(mod3\right)\equiv\left(-1\right)^x\left(mod3\right)\)

mà ta có số chính phương khi chia cho \(3\)chỉ dư \(0\)hoặc \(1\).

Suy ra \(x\)là số chẵn. 

Đặt \(x=2k,k\inℕ\).

Ta có: \(5^{2k}+12^{2k}=y^2\)

\(\Leftrightarrow y^2-12^{2k}=5^{2k}\)

\(\Leftrightarrow\left(y-12^k\right)\left(y+12^k\right)=5^{2k}\)

Suy ra \(\hept{\begin{cases}y-12^k=5^m\\y+12^k=5^n\end{cases}}\)với \(m+n=2k,m< n\).

suy ra \(2.12^k=5^n-5^m=5^m\left(5^{n-m}-1\right)\)

Ta có: \(2.12^k⋮̸5\Rightarrow5^m\left(5^{n-m}-1\right)⋮̸5\Rightarrow m=0\)

\(2.12^k=5^n-1=5^{2k}-1=25^k-1\)

Với \(k=0\)\(2.12^k=2,25^k-1=-1\)không thỏa mãn. 

Với \(k=1\)\(2.12^k=2.12=24,25^k-1=25-1=24\)thỏa mãn. 

suy ra \(x=2\).

Với \(k\ge2\)\(25^k-1>24^k-1>24^k=\left(2.12\right)^k>2.12^k\)

Vậy \(2\)là giá trị duy nhất của \(x\)thỏa mãn ycbt. 

9 tháng 3 2022

Đặt a2=2x+5ya2=2x+5y

-Nếu x=01+5y=a25y=(a1)(a+1){a+1=5ma1=5n(m,nN,m+n=y,m>n)2=5m5n=5n(5mn1)⇒1+5y=a2⇒5y=(a−1)(a+1)⇒{a+1=5ma−1=5n(m,n∈N,m+n=y,m>n)⇒2=5m−5n=5n(5m−n−1)

Nếu n=05m1=25m=3→5m−1=2⇒5m=3 (vô lý)

Nếu n0≠0 thì vế phải chia hết cho 5, vế trái không chia hết cho 5 loại

Tương tự, thử lần lượt x=1;2;3 để tìm nghiệm.

-Nếu x>3

  +) Với y lẻ: Đặt y=2k+1 (kN). Ta có: a2=2x+52k+10+25k.51k.5=5a2=2x+52k+1≡0+25k.5≡1k.5=5(mod 8)a2a2 không là số chính phương loại.

  +) Với y chẵn: Đặt y=2k (kN)2x+52k=a22x=(a5k)(a+5k){a+5k=2ba5k=2c(b,cN,b+c=x,b>c)2.5k=2b2c=2c(2bc1)2b=2b=12c11=5k2c1=5k+11k+1=2⇒2x+52k=a2⇒2x=(a−5k)(a+5k)⇒{a+5k=2ba−5k=2c(b,c∈N,b+c=x,b>c)⇒2.5k=2b−2c=2c(2b−c−1)⇒2b=2⇒b=1⇒2c−1−1=5k⇒2c−1=5k+1≡1k+1=2(mod 4)2c1=2c=2x=2+1=3⇒2c−1=2⇒c=2⇒x=2+1=3(loại, vì x>3)

17 tháng 5 2018

a) Nhận thấy x = 1 không là nghiệm của phương trình nên ta xét \(x\ge2\)

 Do đó , y là số lẻ 

Mà 12x , y2  \(\equiv1\left(mod8\right)\)

Suy ra 5x \(\equiv1\left(mod8\right)\)

=> x chẵn 

Đặt x = 2k (k > 0)

=> 52k = (y - 12k)(y + 12k

Mặt khác , 5 là số nguyên tố nên tồn tại một số m,m < k thõa : y + 12k = 52k - m 

và y - 12k = 5m 

=> 2.12k = 5m(52k - 2m - 1)

Nhận thấy : 2 và 12 là hai số nguyên tố cùng nhau với 5 

=> 52k + 122k = (12k + 1)2

Mà 2.12k  =  5m =>  m = 0 và y = 12k + 1

=> 2.12k = 25k - 1

Tìm từng giá trị của k thấy k = 1 thõa mãn phương trình 

Vậy x = 2 , y = 13

17 tháng 5 2018

b) Dùng nhị thức Newton , ta khai triển hai hạng tử được 

\(\left(2+\sqrt{3}\right)^{2016}+\left(2-\sqrt{3}\right)^{2016}=2^{2016}+2^{2016}+3^{1008}+3^{1008}=2\left(2^{2016}+3^{1008}\right)⋮2\)

Vậy ...... 

NM
24 tháng 8 2021

Có: 2n+2017=a^2 (1)        (a,b ∈N)

      n+2019=b^2  (2)   

Từ (1)⇒ a lẻ ⇒ a=2k+1 (k∈N)

 (1) trở thành 2n+2017=(2k+1)^2

                    ⇔ n+1008=2k(k+1)

Vì k(k+1) là tích 2 số tự nhiên liên tiếp ⇒ k(k+1) chia hết cho 2 

⇒ n+1008 chia hết cho 4 ⇒n chia hết cho 4 (vì 1008 chia hết cho 4)

Vì n chia hết cho 4 ⇒ b lẻ ⇒b=2h+1 (h∈N)

(2) trở thành n+2019=(2h+1)^2

                    ⇔n+2018=4(h^2+h) (3)

Có: n chia hết cho 4, 2018 không chia hết cho 4

⇒ n+2018 không chia hết cho 4

mà 4(h^2+h) chia hết cho 4

Nên (3) vô lý

Vậy không tồn tại n thỏa mãn