K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2016

Ta có:

abc - cba = (n2 - 1) - (n - 2)2

=> (100a + 10b + c) - (100c + 10b + a) = n2 - 1 - [(n - 2).n - (n - 2).2]

=> 100a + 10b + c - 100c - 10b - a = n2 - 1 - n2 + 2n + 2n - 4

=> 99a - 99c = 4n - 5

=> 99.(a - c) = 4n - 5

=> 4n - 5 chia hết cho 99

Mà 99 < abc < 1000 => 99 < n2 - 1 < 1000

=> 100 < n2 < 1001

=> 10 < n < 32

=> 35 < 4n - 5 < 123

=> 4n - 5 = 99

=> 4n = 99 + 5 = 104

=> n = 104 : 4 = 26

=> abc = 262 - 1 = 676 - 1 = 675

Vậy số cần tìm là 675

8 tháng 9 2016

pn ơi sao từ 10<n<32 lai => 53<4n-5<123

6 tháng 1 2018

abc=100a+10b+c=n2-1(*)

cba=100c+10b+a=n2-4n+4(**)

(*)-(**)=99(a-c)=4n+5

=> 4n-5 chia hết cho 99

Mà \(100\le abc\le999\)

=> \(100\le n^2-1\le999\)

<=> \(101\le n^2\le1000\)=\(11< 31\)=\(39\le4n-5\le199\)

Vì  4n+5 chia hết cho 99 

Nên 4n-5=99

4n=99+5

4n=104

n=104:4

n=26

Vậy abc=675

6 tháng 1 2018

bạn ơi giúp mk giải nốt bài 2 đc ko ? cảm ơn bạn rất rất nhìu

1 tháng 1 2016

anh muốn lên giường không

30 tháng 8 2020

\(\overline{abc}\) đấy

AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Bạn thử xem lại đề xem điều kiện số $1$ thì $abc=n^2-1$ hay $\overline{abc}=n^2-1$ ??

14 tháng 1 2017

minh ko biet xin loi ban nha

minh ko biet xin loi ban nha

minh ko biet xin loi ban nha

minh ko biet xin loi ban nha

15 tháng 1 2017

\(a_3=3,a_4=\frac{11}{3}\) nên đề sai rồi nha bạn.

                                    Mn giúp mk giải đề này với.(Mn đừng bơ mk nha. Mơn mn nhìu)1.Tìm tất cả các số tự nhiên có 3 chữ số abc trong hệ thập phân sao cho với n là số nguyên lớn hơn 2 ta có abc =\(n^2-1\)và cba =\(\left(n-2\right)^2\)2.giải hpt:\(\hept{\begin{cases}x+y+\frac{1}{x}+\frac{2}{y}=5\\x^2+y^2+\frac{1}{x^2}+\frac{4}{y^2}=7\end{cases}}\)3.a) Cho\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)và...
Đọc tiếp

                                    Mn giúp mk giải đề này với.(Mn đừng bơ mk nha. Mơn mn nhìu)

1.Tìm tất cả các số tự nhiên có 3 chữ số abc trong hệ thập phân sao cho với n là số nguyên lớn hơn 2 ta có abc =\(n^2-1\)cba =\(\left(n-2\right)^2\)

2.giải hpt:\(\hept{\begin{cases}x+y+\frac{1}{x}+\frac{2}{y}=5\\x^2+y^2+\frac{1}{x^2}+\frac{4}{y^2}=7\end{cases}}\)

3.a) Cho\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)và xy>0.Tìm max của M=\(\frac{1}{x}+\frac{1}{y}\) 

b)CM:\(P=\frac{3-\sqrt{3+\sqrt{3+....+\sqrt{3}}}}{6-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< \frac{1}{5}\)(Tử có 2007 dấu căn,Mẫu  có 2006 dấu căn)

4.Cho tam giác ABC nhọn nội tiếp đường tròn tâm O và có trực tâm H.Giả sử M là 1 điểm trên cung BC không chứa A

(M khác B,C).Gọi N,P lần lượt là điểm đối xứng của M qua các đường thẳng AB,AC.

a)CM: tứ giác AHCP nội tiếp  

b)CM: N,H,P thẳng hàng 

c)Tìm vị trí của M  để NP lớn nhất

5. Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R). Gọi D,E,F, lần lượt là giao điểm của các đường thẳng AO vs BC;BO vs AC;CO vs AB.CM AD+BE+CF\(\ge\)\(\frac{9R}{2}\)

0
15 tháng 6 2019

bài 2 

Cộng 2 vế của -4038.(1) + (2) ta được

\(a_1^2+a_2^2+...+a_{2019}^2-4038\left(a_1+a_2+...+a_{2019}\right)\le2019^3+1-4028.2019^2\)

\(\Leftrightarrow a_1^2+a_2^2+...+a_{2019}^2-4038a_1-4038a_2-...-4038a_{2019}\)

                                                                       \(\le2019^3+1-2019.2019^2-2019.2019^2\)

\(\Leftrightarrow a_1^2+a_2^2+...+a_{2019}^2-4038a_1-4038a_2-...-4038a_{2019}+2019.2019^2\le1\)

\(\Leftrightarrow\left(a_1^2-4038a_1+2019^2\right)+...+\left(a_{2019}^2-4038a_{2019}+2019^2\right)\le1\)

\(\Leftrightarrow A=\left(a_1-2019\right)^2+\left(a_2-2019\right)^2+...+\left(a_{2019}-2019\right)^2\le1\)

Do \(a_1;a_2;...;a_{2019}\in N\)nên \(A\in N\)

\(\Rightarrow\orbr{\begin{cases}A=0\\A=1\end{cases}}\)

*Nếu A = 0 

Dễ thấy \(A=\left(a_1-2019\right)^2+\left(a_2-2019\right)^2+...+\left(a_{2019}-2019\right)^2\ge0\forall a_1;a_2;...;a_{2019}\)

Nên dấu "=" xảy ra \(\Leftrightarrow a_1=a_2=a_3=...=a_{2019}=2019\)

*Nếu A = 1 

\(\Leftrightarrow\left(a_1-2019\right)^2+\left(a_2-2019\right)^2+...+\left(a_{2019}-2019\right)^2=1\)(*)

Từ đó dễ dàng nhận ra trong 2019 số \(\left(a_1-2019\right)^2;\left(a_2-2019\right)^2;...;\left(a_{2019}-2019\right)^2\)phải tồn tại 2018 số bằng 0

Hay nói cách khác trong 2019 số \(a_1;a_2;a_3;...;a_{2019}\)phải tồn tại 2018 số có giá trị bằng 2019

Giả sử \(a_1=a_2=...=a_{2018}=2019\)

Khi đó (*)\(\Leftrightarrow\left(a_{2019}-2019\right)^2=1\)

               \(\Leftrightarrow\orbr{\begin{cases}a_{2019}=2020\\a_{2019}=2018\end{cases}}\)

Thử lại...(tự thử nhé)

Vậy...

                                                      

15 tháng 6 2019

Bài 1 : Vì \(4^{2019}\)có cơ số là 4 , số mũ 2019 là lẻ nên có tận cùng là 4

Để \(4^{2019}+3^n\)có tận cùng là 7 thì \(3^n\)có tận cùng là 3

Mà n là số tự nhiên nên n = 1