Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình cần chứng minh: x + 19; 2x + 10; 3x + 13; 4x + 37 là số chính phương
Thật vậy: Đặt x + 19 = a2 ; 4x + 37 = b2 (g/s a; b \(\ge\)0)
=> \(4a^2-b^2=39\)
<=> (2a + b ).(2a - b) = 3.13 = 1.39
Vì 2a + b > 2a - b. Nên ta có các trường hợp sau
+) 3a + b = 13; 2a - b = 3 => 2a = 8; b = 5 => a = 4; b = 5 => x = - 3
Thay vào ta có \(\sqrt{x+19},\sqrt{2x+10},\sqrt{3x+13},\sqrt{4x+37}\)là các số nguyên
=> x = - 3 thỏa mãn
+) 3a + b = 39; 2a - b = 1 => 2a = 20; b = 19 => a = 10; b = 19 => x = 81
Thay vào ta có \(\sqrt{2x+10}\)không là số nguyên
=> x = 81 loại
Ta có \(A=\frac{1}{\sqrt{4x^2+4x+1}}=\frac{1}{\sqrt{\left(2x+1\right)^2}}=\frac{1}{\left|2x+1\right|}\)
\(B=\frac{2x-2}{\sqrt{x^2-2x+1}}=\frac{2\left(x-1\right)}{\sqrt{\left(x-1\right)^2}}=\frac{2\left(x-1\right)}{\left|x-1\right|}\)
Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\)\(x^2+y^2+z^2=4\)
\(P=\frac{x^3}{x+3y}+\frac{y^3}{y+3z}+\frac{z^3}{z+3x}=\frac{x^4}{x^2+3xy}+\frac{y^4}{y^2+3yz}+\frac{z^4}{z^2+3zx}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(x^2+y^2+z^2\right)}=\frac{4^2}{4+3.4}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{2}{\sqrt{3}}\)
\(a,\frac{1}{\sqrt{5x+15}}\)
Để biểu thức trên có nghĩa :
\(\Rightarrow\sqrt{5x+15}\ge0\)
\(\Rightarrow5\left(x+3\right)\ge0\)
\(\Rightarrow x\ge-3\)
Vậy....