Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A nguyên
=>10x-15+6 chia hết cho 2x-3
=>\(2x-3\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{2;1;3;0\right\}\)
\(A=\frac{3x-4}{2x-3}=\frac{2x-3+x-1}{2x-3}=1+\frac{x-1}{2x-3}\)
Để A có giá trị nguyên thì
\(x-1⋮2x-3\Leftrightarrow2x-2⋮2x-3\)
\(\Rightarrow2x-3-\left(2x-2\right)⋮2x-3\Rightarrow1⋮2x-3\)
\(\orbr{\begin{cases}2x-3=1\\2x-3=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
Để A nguyên thì \(x^2-4x-4⋮x-7\)
\(\Rightarrow x^2+3x-7x-21+17⋮x-7\)
\(\Rightarrow\left(x-7\right)\left(x+3\right)+17⋮x-7\)
Mà \(\left(x-7\right)\left(x+3\right)⋮x-7\)
\(\Rightarrow17⋮x-7\)
\(\Rightarrow x-7\in\left\{1;17;-1;-17\right\}\)
\(\Rightarrow x\in\left\{8;24;6;-10\right\}\)
\(\text{A=}\frac{x^2-4x-4}{x-7}\)
\(=\frac{x^2-4x-21+17}{x-7}\)
\(=\frac{x^2+3x-7x-21}{x-7}+\frac{17}{x-7}\)
\(=\frac{x\left(x+3\right)-7\left(x+3\right)}{x-7}+\frac{17}{x-7}\)
\(=\frac{\left(x-7\right)\left(x+3\right)}{x-7}+\frac{17}{x-7}\)
\(=\left(x+3\right)+\frac{17}{x-7}\)
Vì \(3\in Z\)
\(\Leftrightarrow x+3\in Z\)
\(\Rightarrow\text{A}\in Z\text{ khi }\frac{17}{x-7}\in Z\)
\(\Leftrightarrow\left(x-7\right)\inƯ\left(17\right)=\left\{1;-1;17;-17\right\}\)
\(\Leftrightarrow x=\left\{8;6;24;-10\right\}\)
Vậy với \(x=\left\{-10;6;8;24\right\}\)thì A có giá trị nguyên
\(C=\dfrac{10-9}{2x-3}=\dfrac{1}{2x-3}\in Z\)
\(\Rightarrow\left(2x-3\right)\inƯ\left(1\right)=\left\{1;-1\right\}\)
Do \(x\in Z\)
\(\Rightarrow x\in\left\{1;2\right\}\)
Bài 1:
\(A=\frac{10x-9}{2x-3}=\frac{10x-15+6}{2x-3}=\frac{5.\left(2x-3\right)+6}{2x-3}=\frac{5.\left(2x-3\right)}{2x-3}+\frac{6}{2x-3}=5+\frac{6}{2x-3}\)
Để A nguyên thì \(\frac{6}{2x-3}\)nguyên
=> 6 chia hết cho 2x - 3
=> \(2x-3\inƯ\left(6\right)\)
Mà 2x - 3 là số lẻ => \(2x-3\in\left\{1;-1;3;-3\right\}\)
=> \(2x\in\left\{4;2;6;0\right\}\)
=> \(x\in\left\{2;1;3;0\right\}\)
Vậy \(x\in\left\{2;1;3;0\right\}\)thỏa mãn đề bài
Bài 2:
\(3+\frac{a}{b}=3.\frac{a}{b}\)
=> \(3.\frac{a}{b}-\frac{a}{b}=3\)
=> \(2.\frac{a}{b}=3\)
=> \(\frac{a}{b}=\frac{3}{2}\)
Vậy \(\frac{a}{b}=\frac{3}{2}\)
a, Để phân số đạt giá trị nguyễn
\(\Rightarrow x+1⋮x-2\)
\(\Rightarrow x-2+3⋮x-2\)
mà \(x-2⋮x-2\Rightarrow3⋮x-2\)
\(\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{3;5\pm1\right\}\)
Để F nguyên
=> 4x+9 chia hết cho 2x+1
=> 4x+2+7 chia hết cho 2x+1
Vì 4x+2 chia hết cho 2x+1
=> 7 chia hết cho 2x+1
=> 2x+1 thuộc Ư(7)
2x+1 | x | F |
1 | 0 | 9 |
-1 | -1 | 5 |
7 | 3 | 3 |
-7 | -4 | 1 |
KL:....................................
\(A=\frac{5x+9}{x+1}=\frac{5x+5+4}{x+1}\)\(ĐKXĐ:x\ne-1\)
\(=\frac{5x+5}{x+1}+\frac{4}{x+1}\)
\(=\frac{5\left(x+1\right)}{x+1}+\frac{4}{x+1}\)
\(=5+\frac{4}{x+1}\)
\(\Rightarrow A=5+\frac{4}{x+1}\)
Để \(A\in Z\Rightarrow5+\frac{4}{x+1}\in Z\)
\(\Rightarrow x+1\inƯ\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow x=\left\{0;1;3;-2;-3;-5\right\}\)
Để C nguyên thì : 10x - 9 chia hết cho 2x - 3
<=> 10x - 15 + 6 chia hết cho 2x - 3
<=> 5(2x - 3) + 6 chia hết cho 2x - 3
=> 6 chia hết cho 2x - 3
=> 2x - 3 thuộc Ư(6) = {-6;-3;-2;-1;1;2;3;6}
Ta có bảng :