Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tớ nghĩ là tổng các ước dương nhé .... chứ cộng thêm ước âm thì thành =0 á ...Cũng là số chính phương nhưng bài kiểu này hơi dễ.
Do p là số nguyên tố => \(p^2\) chỉ có các ước là : \(p^2;p;1\)
Ta có: \(p^2+p+1=k^2\left(k\in N\right)\Rightarrow4p^2+4p+1+3=4k^2\)
\(\Rightarrow\left(2p+1\right)^2+3=4k^2\Rightarrow4k^2-\left(2p+1\right)^2=3\Rightarrow\left(2k-2p-1\right)\left(2k+2p+1\right)=3\)
giờ tìm ước á
Ta có : \(D=4x^4+y^4\)
\(=\left(4x^4+4x^2y^2+y^4\right)-\left(2xy\right)^2\)
\(=\left(2x^2+y^2\right)-\left(2xy\right)^2\)
\(=\left(2x^2+y^2+2xy\right)\left(2x^2+y^2-2xy\right)\)
Do x,y nguyên dương nên \(2x^2+y^2+2xy>1\)
Do đó để D là số nguyên tố \(\Leftrightarrow\hept{\begin{cases}2x^2+y^2+2xy=1\\2x^2+y^2-2xy=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)
Thử lại ta có \(D=1\) không là số nguyên tố
Do đó, không có cặp số nguyên dương x.y thỏa mãn đề.
p=3; 5
Chúc bạn học giỏi nha!
Trả lời:
p=3=>p2+14=23
Chỉ có 1 giá trị p=3 thôi!