K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nhận thấy n=2 thỏa mãn điều kiện

Với n>2 ta có: 

\(n^6-1=\left(n^3-1\right)\left(n^3+1\right)=\left(n^3-1\right)\left(n+1\right)\left(n^2-n+1\right)\)

Do đó tất cả các thừa số nguyên tố của \(n^2-n-1\)chia hết cho \(n^3-1\)hoặc \(n^2-1=\left(n-1\right)\left(n+1\right)\)

Để ý rằng \(\left(n^2-n+1;n^3-1\right)\le\left(n^3+1;n^3-1\right)\le2\)

Mặt khác \(n^2-n+1=n\left(n-1\right)+1\)là số lẻ, do đó tất cả các thừa số nguyên tố của \(n^2-n-1\)chia hết cho \(n+1\)

Nhưng \(n^2-n+1=\left(n+1\right)\left(n-2\right)+3\)

Vì vậy ta phải có \(n^2-n+1=3^k\left(k\in Z^+\right)\)

Vì \(n>2\Rightarrow k\ge2\)

do đó \(3|n^2-n+1\Rightarrow n\equiv2\left(mod3\right)\)

Nhưng mỗi TH \(n\equiv2,5,8\left(mod9\right)\Rightarrow n^2-n+1\equiv3\left(mod9\right)\)(mâu thuẫn)

Vậy n=2

4 tháng 3 2020

Bài làm rất hay mặc dù làm rất tắt.

Tuy nhiên:

Dòng thứ 4: Ước số nguyên tố của \(n^2-n+1\)chia hết cho \(n^3-1\)hoặc \(n^2-1\)( em viết thế này không đúng rồi )

------> Sửa: ước số nguyên tố của \(n^2-n+1\) chia hết \(n^3-1\) hoặc  \(n^2-1\)

Hoặc:  ước số nguyên tố của \(n^2-n+1\) là ước  \(n^3-1\) hoặc  \(n^2-1\)

Dòng thứ 6 cũng như vậy:

a chia hết b khác hoàn toàn a chia hết cho b 

a chia hết b nghĩa là a là ước của b ( a |b)

a chia hết cho b nghĩa là b là ước của a.( \(a⋮b\))

3 dòng cuối cô không hiểu  em giải thích rõ giúp cô với. Please!!!!

Nhưng cô có cách khác dễ hiểu hơn này:

\(n^2-n+1=3^k\);

 \(n+1⋮3\)=> tồn tại m để : n + 1 = 3m

=> \(\left(n+1\right)\left(n-2\right)+3=3^k\)

<=>\(3m\left(n+1-3\right)+3=3^k\)

<=> \(m\left(n+1\right)-3m+1=3^{k-1}\)

=> \(m\left(n+1\right)-3m+1⋮3\)

=> \(1⋮3\)vô lí

3 tháng 7 2017

1. Với D là biến đếm, ta có quy trình bấm phím liên tục:

D=D+1:A=DxB-C-D:C=B:B=A

CALC giá trị C=1; B=2; D=2 bấm "=" liên tục

Kết quả: x12 = 5245546; x13 = 67751587; x14 = 943276658

2. Dùng máy tính tính được x=27; y=11; z=19  => A=?

3 tháng 7 2017

Hướng dẫn cụ thể cách bấm bài 2 được ko bạn

2 tháng 11 2016

\(p=\left(n-1\right)^2\left[\left(n-1\right)^2+1\right]+1\)

\(\left(n-1\right)^4+2.\left(n-1\right)^2+1-\left(n-1\right)^2\)

\(\left[\left(n-1\right)^2+1\right]^2-\left(n-1\right)^2\)

\(\left[\left(n-1\right)^2+1-\left(n-1\right)\right]\left[\left(n-1\right)^2+1+\left(n-1\right)\right]\)

\(\left[n^2-3n+3\right]\left[n^2-n+1\right]\)

can

\(\orbr{\begin{cases}n^2-3n+3=1\Rightarrow n=\orbr{\begin{cases}n=2\\n=1\end{cases}}\\n^2-n+1=1\Rightarrow n=\orbr{\begin{cases}n=0\\n=1\end{cases}}\end{cases}}\)\(\orbr{\begin{cases}n^2-3n+3=1\\n^2-n+1=1\end{cases}}\)

n=(0,1,2)

du

n=2

ds: n=2

31 tháng 5 2017

2, 5a+b+3c/a-b+c>1 <=> a-b+c+4a+2b+2c/a-b+c>1 

<=>4a+2b+2c/a-b+c > 0 (1) 

xét P(2)=4a+2b+c>0,P(-1)=a-b+c>0 (do P(x)>0 với mọi x)

=>P(2)/P(-1)>0 => (1) đúng =>đpcm

3, hóng cao nhân 

-đề chuyên LQĐ

31 tháng 5 2017

1,Bổ đề : (a^2+b^2+c^2)(a+b+c) >= 3(a^2b+b^2c+c^2a) (nhân bung rồi Cauchy từng cặp 2 số) 

từ đó  P <= (a+b+c)/3-(a+b+c)^2/9=x/3-x^2/9 (với x=a+b+c>0)=x/3-(x/3)^2=t-t^2(với t=a+b+c>0)=t(1-t)<=(t+1-t)^2/4=1/4

maxP=1/4,đạt tại a=b=c=1/2