\(n^4+2n^3+2n^2+n+7\)là số chính phương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2018

\(n^4+2n^3+2n^2+n+7=k^2\)

\(\Leftrightarrow\left(n^2+n\right)^2+\left(n^2+n\right)+7=k^2\)

\(\Leftrightarrow4\left(n^2+n\right)^2+4\left(n^2+n\right)+1+27=4k^2\)

\(\Leftrightarrow\left(2n^2+2n+1\right)^2-4k^2=-27\)

\(\Leftrightarrow\left(2n^2+2n+1-2k\right)\left(2n^2+2n+1+2k\right)=-27\)

Làm nôt

19 tháng 1 2017

Giả sử có số \(n\) thoả đề. Khi đó do \(a\) chính phương nên \(4a\) cũng chính phương.

Và \(4a=4n^4+8n^3+8n^2+4n+28=\left(2n^2+2n+1\right)^2+27\)

Như vậy sẽ có 2 số chính phương lệch nhau \(27\) đơn vị là số \(4a\) và \(\left(2n^2+2n+1\right)^2\).

Ta sẽ tìm 2 số chính phương như thế.

-----

Ta sẽ giải pt nghiệm nguyên dương \(m^2-n^2=27=1.27=3.9\)

Ta có bảng: 

\(m+n\)\(27\)\(9\)
\(m-n\)\(1\)\(3\)
\(m^2\)\(196\)\(36\)
\(n^2\)\(169\)\(9\)

------

Theo bảng trên thì số \(\left(2n^2+2n+1\right)^2\) (số chính phương nhỏ hơn) sẽ nhận giá trị \(169\) và \(9\).

Đến đây bạn tự giải tiếp nha bạn.

Đáp số: \(2;-3\)

19 tháng 1 2017

chịu rồi 

tk nhé 

thanks 

2222

12 tháng 1 2019

các số chứ ko phải cặp số nha

12 tháng 1 2019

mới có lớp 6 thôi à

NM
24 tháng 8 2021

Có: 2n+2017=a^2 (1)        (a,b ∈N)

      n+2019=b^2  (2)   

Từ (1)⇒ a lẻ ⇒ a=2k+1 (k∈N)

 (1) trở thành 2n+2017=(2k+1)^2

                    ⇔ n+1008=2k(k+1)

Vì k(k+1) là tích 2 số tự nhiên liên tiếp ⇒ k(k+1) chia hết cho 2 

⇒ n+1008 chia hết cho 4 ⇒n chia hết cho 4 (vì 1008 chia hết cho 4)

Vì n chia hết cho 4 ⇒ b lẻ ⇒b=2h+1 (h∈N)

(2) trở thành n+2019=(2h+1)^2

                    ⇔n+2018=4(h^2+h) (3)

Có: n chia hết cho 4, 2018 không chia hết cho 4

⇒ n+2018 không chia hết cho 4

mà 4(h^2+h) chia hết cho 4

Nên (3) vô lý

Vậy không tồn tại n thỏa mãn

DD
20 tháng 6 2021

\(n^2+2n+\sqrt{n^2+2n+18}+9\)là số chính phương thì \(\sqrt{n^2+2n+18}\)là số tự nhiên.

Khi đó \(n^2+2n+18=m^2\)

\(\Leftrightarrow\left(m-n-1\right)\left(m+n+1\right)=1.17\)

Do \(m,n\)là số tự nhiên nên 

\(\hept{\begin{cases}m-n-1=1\\m+n+1=17\end{cases}}\Leftrightarrow\hept{\begin{cases}m=9\\n=7\end{cases}}\)

Với \(n=7\)thì \(n^2+2n+\sqrt{n^2+2n+18}+9=7^2+2.7+\sqrt{7^2+2.7+18}+9\)

\(=81=9^2\)là số chính phương (thỏa mãn).

Vậy \(n=7\).