Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3
b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3
\(\frac{n+4}{n-3}\)= \(\frac{n-3+7}{n-3}\)= \(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3
=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}
=> n\(\in\){ 4; 10; 2; -4}
Vậy...
c) Bn thay vào r tính ra
Với n≠-2,n∈Z. Để 4/n+2 có giá trị là số nguyên thì 4⋮n+2
⇒n+2 ∈ Ư(4)={1;2;4;-1;-2;-4}
Nếu n+2=1⇒n=-1(TMĐK)
Nếu n+2=2⇒n=0(TMĐK)
Nếu n+2=4⇒n=2(TMĐK)
Nếu n+2=-1⇒n=-3(TMĐK)
Nếu n+2=-2⇒n=-4(TMĐK)
Nếu n+2=-4⇒n=-6(TMĐK)
Vậy với n ∈ {-1;0;2;-3;-4;-6} thì 4/n+2 có giá trị nguyên.
-bạn tự lập bảng nhé
a, \(3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
b, \(\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\Rightarrow n-3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
n-3 | 1 | -1 | 11 | -11 |
n | 4 | 2 | 14 | -8 |
c, \(\dfrac{3n}{n+2}=\dfrac{3\left(n+2\right)-6}{n+2}=3-\dfrac{6}{n+2}\Rightarrow n+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
a: 12/3n-1 là số nguyên khi 3n-1 thuộc Ư(12)
=>3n-1 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
mà n là số nguyên
nên n thuộc {0;1;-1}
c: 2n+5/n-3 là số nguyên
=>2n-6+11 chia hết cho n-3
=>n-3 thuộc {1;-1;11;-11}
=>n thuộc {4;2;14;-8}
Lời giải:
a. Để $B$ là phân số thì $n-4\neq 0$
$\Rightarrow n\neq 4$
b. Với $n$ nguyên, để $B$ nguyên thì:
$n\vdots n-4$
$\Rightarrow (n-4)+4\vdots n-4$
$\Rightarrow 4\vdots n-4$
$\Rightarrow n-4\in \left\{\pm 1; \pm 2; \pm 4\right\}$
$\Rightarrow n\in \left\{5; 3; 6; 2; 8; 0\right\}$
Để A là số nguyên
=> 2 chia hết cho n-1
=> n-1 thuộc U(2)={-1 ; 1 ; -2 ; 2 }
Ta có bẳng :
n-1 | -1 | -2 | 1 | 2 |
n | 0 | -1 | 2 | 3 |
Tự đáp số ...
Để A nhận giá trị nguyên thì 2n+1n+22n+1n+2 nguyên
⇔2n+1⋮n+2⇔2n+1⋮n+2
⇒(2n+4)−4+1⋮n+2⇒(2n+4)−4+1⋮n+2
⇒2(n+2)−3⋮n+2⇒2(n+2)−3⋮n+2
2(n+2)⋮n+22(n+2)⋮n+2
⇒−3⋮n+2⇒−3⋮n+2
⇒n+2∈Ư(−3)⇒n+2∈Ư(−3)
⇒n+2∈{−1;−3;1;3}⇒n+2∈{−1;−3;1;3}
⇒n∈{−3;−5;−1;1}