Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: n+2 chia hết cho n-3
=>(n-3)+5 chia hết cho n-3
Mà n-3 chia hết cho n-3
=>5 chia hết cho n-3
=> n-3 thuộc Ư(5)={1;5;-1;-5}
=> n thuộc {4;8;2;-2}
b) Ta có: 6n+1 chia hết cho 3n-1
=>(6n-2)+2+1 chia hết cho 3n-1
=>2(3n-1) +3 chia hết cho 3n-1
Mà 2(3n-1) chia hết cho 3n-1
=> 3 chia hết cho 3n-1
=> 3n-1 thuộc Ư(3)={1;3;-1;-3}
=> 3n thuộc {2;4;0;-2}
=>n thuộc {2/3 ; 4/3 ; 0 ; -2/3}
Mà n thuộc Z
=>n=0
ta có ; 3n+1=3n-3+3+1=3n-3+4 để 3n+1 chia hết cho n-1 thì 3n-3+4 chia hết cho n-1 ma 3n-3 chia hết cho n-1 nền 4 chia hết cho n-1 hay n-1 thuộc Ư(4) ma U(4)={-4;-2;-1;1;2;4} suy ra n-1 thuộc {-4;-2;-1;1;2;4} suy ra n thuộc {-3;-1;0;2;3;5} , ủng hộ mk nha mấy bạn
a.
n+3 chia hết cho n+1
=> n+1+2 chia hết cho n+1
=>(n+1)+2 chia hết cho n+1
=> 2 chia hết cho n+1
=> n +1 thuộc Ư(2)={-1,-2,1,2}
n+1 | -1 | -2 | 1 | 2 |
n | -2 | -3 | 0 | 1 |
Vậy....
b.
n+4 chia hết cho n-1
=> n-1+5 chia hết cho n-1
=> (n-1)+5 chia hết cho n-1
=> 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-1,-5,1,5}
n-1 | -1 | -5 | 1 | 5 |
n | 0 | -4 | 2 | 6 |
Vậy....
3/ => a(b-2) thuộc Ư(3) = {1;3;-1;-3}
Mà a > 0
=> a thuộc {1;3}
Ta có bảng kết quả:
a | 1 | 3 |
---|---|---|
b-2 | 3 | 1 |
b | 5 | 3 |
\(3n⋮n+1\)
=>\(3n+3-3⋮n+1\)
=>\(-3⋮n+1\)
=>\(n+1\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{0;-2;2;-4\right\}\)
Ta có : 3n ⋮ n + 1
=> (3n + 3) - 3 ⋮ n + 1
=> 3(n + 1) - 3 ⋮ n + 1
Vì 3(n + 1) ⋮ n + 1 nên 3 ⋮ n + 1
=> n + 1 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-4;-2;0;2}
Ta có :
2n+1=2(n-1)+3
Vì 2(n-1) chia hết cho n-1
suy ra 3 chia hết cho n-1
Hay n-1 thuộc Ư(3)= {1,-1,3,-3} . Sau đó xét từng trường hợp ,tìm n rồi kết luận là xong
Có:n-1 chia hết n-1
=>2n-2 chia hết n-1
Mà 2n+1 chia hết n-1
=>(2n+1)-(2n-1) chia hết n-1
=>2n+1-2n+1 chia hết n-1
=>2 chia hết n-1
=>n-1 thuộc Ư(2)={1;-1;2;-2}
còn lại lập bảng thử từng TH nhé
7 \(⋮\)n - 1
=> n - 1 thuộc Ư ( 7 ) = { - 7 ; - 1 ; 1 ; 7 }
=> n thuộc { - 6 ; 0 ; 2 ; 8 }
Vậy n thuộc { - 6 ; 0 ; 2 ; 8 }
\(7⋮n-1 \)\(\Rightarrow n-1\inƯ\left(7\right)\left\{1;7\right\}\)
\(\Rightarrow n\in\left\{2;8\right\}\).Vậy \(n\in\left\{2;8\right\}\)