Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)
\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)
Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)
Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890
Vậy n=890
Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)
Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)
\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)
\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)
\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)
\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)
\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)
Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8
Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 =>
=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3
Có n6+206 có ước là n2+2
=> n6+206 chia hết n2+2
=>(n2+2)(n4-2n2+4)+198 chia hết n2+2
=> n2+2 thuộc Ư(198)={3;6;9;11;18;22;33;66;198} (Do n^2+1 >1)
=> n^2 thuộc {1;4;7;9;16;20;31;64;196}
Mà n thuộc N*
=> n thuộc {1;2;3;4;8;14}
Chúc học tốt Kkk
Trả lời:
Xét trường hợp n⋮(n−1)n⋮(n−1), dễ tìm được n=2, thỏa mãn.
- Với n không chia hết cho n-1, ta có:
Nếu n là số nguyên tố, dễ thấy (n−2)!(n−2)! không chia hết cho nn , thỏa mãn.
Nếu n là hợp số, (n−2)!(n−2)! chia hết cho n2n2 khi n có ít nhất 4 ước trong đoạn [2,n−2][2,n−2] (suy ra trực tiếp từ chính chất nếu d là ước của n thì {\frac{n}{d}} cũng là ước của n), khi đó, n sẽ có ít nhất 6 ước (thêm 1 và n).
Do đó, trong trường hợp này, (n−2)!(n−2)! không chia hết cho n2n2 khi n có ít hơn 6 ước.
Kết hợp lại, ta được đáp án : n là các số có ít hơn 6 ước.