\(\frac{4a}{5}+\frac{9b}{10}+c=10\) ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2019

 giải:

Ta có : \(\frac{4a}{5}+\frac{9b}{10}+c=10\) 

=> \(\frac{8a+9b+10c}{10}=10\)

=> \(8a+9b+10c=100\)

Ta có : \(8a+8b+8c< 8a+9b+10c\)

=> \(a+b+c< \frac{100}{8}< 13\)

Mà :\(11< a+b+c\) => \(11< a+b+c< 13\)

Do \(a+b+c\) nguyên dương =>\(a+b+c=12\)

Ta có:\(\hept{\begin{cases}a+b+c=12\left(1\right)\\8a+9b+10c=100\left(2\right)\end{cases}}\)

nhân 2 vế của\(\left(1\right)\) với 8 ta được

\(\hept{\begin{cases}8a+8b+8c=96\left(3\right)\\8a+9b+10c=100\end{cases}}\)

trừ theo vế của \(\left(2\right)\) cho \(\left(3\right)\)ta được:\(b+2c=4\left(4\right)\)

từ \(\left(4\right)\) =>\(c=1\) vì nếu \(c>=2\) thi do b>=1 =>b+2c>4(mt)

với \(c=1\)=>\(b=2,c=9\)

19 tháng 1 2019

Tự hỏi tự trả lời là sao đây

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344c, Tìm 3 số x,y,z...
Đọc tiếp

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  

2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0

b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344

c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17

3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0

b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A

c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

2
19 tháng 12 2019

1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)

Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

=> a + b = -(c + d)

=> b + c = (-a + d) 

=> c + d = -(a + b)

=> d + a = (-b + c)

Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4

Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = 1 + 1 + 1 + 1 = 4

2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)

Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)

b) 72x + 72x + 3 = 344

=> 72x + 72x.73 = 344

=> 72x.(1 + 73) = 344

=> 72x  = 1

=> 72x = 70

=> 2x = 0 => x = 0

c) Ta có :

 \(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)

=>  2x + 2 = 14 => x = 6 ; 

2y - 4 = 6 => y = 5 ; 

6 + 5 + z = 17 => z = 6 

Vậy x = 6 ; y = 5 ; z = 6

3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau) 

=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;  

Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0 

Vậy c = 0 hoặc b = 0

c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau) 

=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)

Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)

Vậy P = 8

9 tháng 1 2020

2. b) \(7^{2x}+7^{2x+3}=344\)

        \(7^{2x}\cdot\left(1+7^3\right)=344\)

        \(7^{2x}\cdot\left(1+343\right)=344\)

        \(7^{2x}\cdot344=344\)

               \(7^{2x}=1\)  

               \(7^{2x}=7^0\)

              \(2x=0\)

               \(x=0\)

Bài 1: 

Theo đề, ta có: 

\(\dfrac{-13}{2}< \dfrac{11}{a}< \dfrac{-13}{3}\)

\(\Leftrightarrow\dfrac{-143}{26}< \dfrac{-143}{-13a}< \dfrac{-143}{33}\)

\(\Leftrightarrow\dfrac{143}{26}>\dfrac{143}{-13a}>\dfrac{143}{33}\)

hay \(a\in\varnothing\)

2 tháng 8 2016

a) \(\frac{2}{x-1}< 0\)=> x-1<=>x<1

b) \(\frac{x-7}{x-11}>0\)

<=> \(\begin{cases}x-7>0\\x-11>0\end{cases}\)hoặc\(\begin{cases}x-7< 0\\x-11< 0\end{cases}\)<=>x>11 hoặc x<7

d) \(\frac{x+10}{x-7}< 0\)

<=> \(\begin{cases}x+10< 0\\x-7>0\end{cases}\)hoặc \(\begin{cases}x+10>0\\x-7< 0\end{cases}\)

=> 7<x<10

2 tháng 8 2016

a) Để \(\frac{2}{x-1}< 0\)

\(\Leftrightarrow x-1< 0\)

\(\Leftrightarrow x< 1\)

b) Để \(\frac{x-7}{x-11}>0\)

\(\Leftrightarrow\begin{cases}x-7>0\\x-11>0\end{cases}\) hoặc \(\begin{cases}x-7< 0\\x-11< 0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>7\\x>11\end{cases}\) hoặc \(\begin{cases}x< 7\\x< 11\end{cases}\)

\(\Leftrightarrow x>11\)  hoặc \(x< 7\)

d) Để \(\frac{x+10}{x-7}< 0\)

\(\Leftrightarrow\begin{cases}x+10>0\\x-7< 0\end{cases}\) hoặc \(\begin{cases}x+10< 0\\x-7>0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>-10\\x< 7\end{cases}\) hoặc \(\begin{cases}x< -10\\x>7\end{cases}\) (vô nghiệm)

\(\Leftrightarrow-10< x< 7\)

14 tháng 7 2017

mk chưa hc tới bài này nên ko biết làm,thông cảm nha.Nhưng cho mk hỏi hậu tạ cái j z bạn

16 tháng 7 2017

- TRỊNH THỊ THANH HUYỀN Hậu tạ nghĩa là trả ơn sau khi nhận được sự giúp đỡ.

17 tháng 2 2018

tra mạng đi hỏi nhiều haha!!!

:V chưởng nhờ anh HUY chỉ cho hihi

nó học giỏi toán lắm đó hehe!!!!

nvcl

17 tháng 2 2018

Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a-b}{x}=\frac{b-c}{y}=\frac{a-c}{z}=\frac{\left(a-b\right)+\left(b-c\right)+\left(a-c\right)}{x+y+z}=\frac{2\left(a-c\right)}{x+y+z}\)
\(\Leftrightarrow\frac{a-c}{z}=\frac{2\left(a-c\right)}{x+y+z}\)
\(\Leftrightarrow x+y+z=2z\)
Do x+y+z lẻ và 2z là số chẵn nên không tồn tại x,y,z=> Đề sai :))
 

19 tháng 7 2015

\(\frac{1}{27}=3^{\frac{1}{81}}\)
=> \(n=\frac{1}{81}\)


\(\frac{16}{2^n}=\frac{1}{2}=\frac{16}{32}=\frac{16}{2^5}\)

=> n = 5


32 < 2n < 128

=> 25 < 2n < 27

=> 2n = 26

=> n = 6

7 tháng 1 2018

b, Có: a/b < c/d => ad < bc

 Xét a.(b+d)-b.(a+c) = ab+ad-ba-bc = ad-bc < 0

=> a.(b+d) < b.(a+c)

=> a/b < a+c/b+d

c, Đề phải là cho a+b+c = 2016 chứ bạn

Có : A = a/a+b+c-c + b/a+b+c-a + c/a+b+c-b = a/a+b + b/b+c + c/c+a

Vì a,b,c thuộc Z+ nên a/a+b > 0 ; b/b+c > 0 ; c/c+a > 0

=> A > a/a+b+c + b/a+b+c + c/a+b+c = 1

Lại có : a < a+b ; b < b+c ; c < c+a => 0 < a/a+b < a ; 0 < b/b+c < 1 ; 0 < c/c+a < 1

=> A < a+c/a+b+c + b+a/a+b+c + c+b/a+b+c = 2

=> 1 < A < 2

=> A ko phải là số tự nhiên

Tk mk nha

7 tháng 1 2018

a,ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU.

TA CÓ:\(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{d}\)=\(\frac{d}{e}\)=>\(\frac{2a^2}{2b^2}\)=\(\frac{3b^2}{3c^2}\)=\(\frac{4c^2}{4d^2}\)=\(\frac{5d^2}{5e^2}\)=\(\frac{2a^2+3b^2+4c^2+5d^2}{2b^2+3c^2+4d^2+5e^2}\)(đfcm)