K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 9 2020

\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=\sqrt{2}\left(m^2+1\right)\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=m^2+1\)

Do \(-1\le sin\left(x+\frac{\pi}{4}\right)\le1\) nên pt vô nghiệm khi và chỉ khi:

\(\left[{}\begin{matrix}m^2+1< -1\\m^2+1>1\end{matrix}\right.\) \(\Leftrightarrow m\ne0\)

Vậy \(m\ne0\)

NV
11 tháng 11 2021

\(\Rightarrow sinx+2=m.cosx\)

\(\Rightarrow sinx-m.cosx=-2\)

Pt đã cho vô nghiệm khi:

\(1^2+\left(-m\right)^2< \left(-2\right)^2\)

\(\Rightarrow m^2< 3\)

\(\Rightarrow-\sqrt{3}< m< \sqrt{3}\)

8 tháng 12 2018

NV
10 tháng 7 2021

\(\Leftrightarrow\left(1-sinx\right)\left(cos2x+3msinx+sinx-1\right)=m\left(1-sinx\right)\left(1+cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\Rightarrow x=\dfrac{\pi}{2}\\cos2x+3m.sinx+sinx-1=m\left(1+sinx\right)\left(1\right)\end{matrix}\right.\)

Bài toán thỏa mãn khi (1) có 5 nghiệm khác nhau trên khoảng đã cho thỏa mãn \(sinx\ne1\)

Xét (1):

\(\Leftrightarrow1-2sin^2x+3msinx+sinx-1=m+m.sinx\)

\(\Leftrightarrow2sin^2x-sinx-2m.sinx+m=0\)

\(\Leftrightarrow sinx\left(2sinx-1\right)-m\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(sinx-m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\Rightarrow x=\dfrac{\pi}{6};\dfrac{5\pi}{6}\\sinx=m\left(2\right)\end{matrix}\right.\)

\(\Rightarrow\left(2\right)\) có 3 nghiệm khác nhau trên \(\left(-\dfrac{\pi}{2};2\pi\right)\)

\(\Leftrightarrow-1< m< 0\)

19 tháng 10 2021

thầy ơi, sao (1 - sinx)(1 + cosx) = cos2x vậy thầy

 

9 tháng 4 2018

13 tháng 6 2019

Hướng dẫn giải:

Chọn A.

Ta có: sin2x – 2( m- 1)sinx. cosx – (m- 1).cos2x = m