Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(f\left(x\right)>0\) \(\forall x\Leftrightarrow\left\{{}\begin{matrix}m^2-1=0\\m+1>0\end{matrix}\right.\) \(\Rightarrow m=1\)
\(\left(m-1\right)\left(m+1\right)x+m+1>0\)
\(\Leftrightarrow\left(m-1\right)\left(m+1\right)x>-\left(m+1\right)\)
Xét m=-1
\(\Rightarrow0.\left(-2\right).x>0\left(l\right)\)
Xét \(m=1\Rightarrow0.2x>-2\left(lđ \forall x\right)\)
Xét \(m\ne\pm1\Rightarrow x>\frac{-1}{m-1}\)
1.
Nếu \(m=0\), \(f\left(x\right)=2x\)
\(\Rightarrow m=0\) không thỏa mãn
Nếu \(x\ne0\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)
Để các biểu thức luôn dương:
a/ \(\Delta'=4-\left(m-5\right)< 0\Leftrightarrow9-m< 0\Rightarrow m>9\)
b/ \(\Delta=\left(m+2\right)^2-4\left(8m+1\right)< 0\)
\(\Leftrightarrow m^2-28m< 0\Rightarrow0< m< 28\)
c/ \(\Delta'=4-\left(m-2\right)^2< 0\Leftrightarrow-m^2+4m< 0\Rightarrow\left[{}\begin{matrix}m< 0\\m>4\end{matrix}\right.\)
d/ Do hệ số \(a=-1< 0\) nên ko tồn tại m thỏa mãn
e/ Tương tự câu trên, ko tồn tại m thỏa mãn
f/ \(\left\{{}\begin{matrix}m-2>0\\\Delta'=\left(m-3\right)^2-\left(m-2\right)\left(m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>2\\-3m+7< 0\end{matrix}\right.\) \(\Rightarrow m>\frac{7}{3}\)
1, BPT đúng với mọi x thuộc R khi vầ chỉ khi:
\(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a>0\\1-4a^2\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\le\frac{-1}{2};a\ge\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow a\ge\frac{1}{2}\)
2, điều kiện: \(\Delta< 0\\ \Leftrightarrow\left(m+2\right)^2+8\left(m-4\right)< 0\\ \Leftrightarrow m^2+12m-28< 0\\ \Leftrightarrow-14< m< 2\)
3, điều kiện: \(\Delta'< 0\\ \Leftrightarrow\left(2m-3\right)^2-\left(4m-3\right)< 0\\ \Leftrightarrow m^2-4m+3< 0\\ \Leftrightarrow1< m< 3\)
4, Nếu m=0 => f(x)=-2x-1<0 (loại)
Nếu m≠0 để f(x)<0 với ∀x ϵ R khi và chỉ khi:
\(\left\{{}\begin{matrix}m< 0\\\Delta'< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\1+m< 0\end{matrix}\right.\)
\(\Rightarrow m< -1\)
Do \(a=1>0\) nên để \(f\left(x\right)>0\) \(\forall x\)
\(\Leftrightarrow\Delta'< 0\)
\(\Leftrightarrow\left(4m-1\right)^2-\left(15m^2-2m-7\right)< 0\)
\(\Leftrightarrow m^2-6m+8< 0\)
\(\Leftrightarrow2< m< 4\)