Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 36 = 9.4. Mà ƯC(4,9) =1
Vậy để 34x5y chia hết cho 36 thì34x5ychia hết cho 4 và 9
34x5y chia hết cho 9 khi 3 + 4 + x + 5 + y9 => 12 + x + y9 (1)
34x5y chia hết cho 4 khi5y4 => y = 2 hoặc y = 6
Với y = 2 thay vào (1) => 14 + x: het9 => x = 4
Với y = 6 thay vào (1) => 18 + x9 => x = 0 hoặc x = 9
Vậy các cặp (x,y) cần tìm là: (4,2); (0,6) và (9,6)
d 10^n+72^n -1
=10^n -1+72n
=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n
=9[10^(n-1)+10^(n-2)+..........................-9n+81n
1) 3n ⋮ 2n - 5
=> 2(3n) - 3(2n - 5) ⋮ 2n - 5
=> 6n - 6n + 15 ⋮ 2n - 5
=> 15 ⋮ 2n - 5
=> 2n-5 ϵ Ư(15)
Ư(15) = {1;-1;3;-3;5;-5;15;-15}
=> n={3;2;4 ;1;5;0;10;-5
a/
17x3y chia hết cho 12 khi đồng thời chia hết cho 3 và 4
+ 17x3y chia hết cho 3 khi 1+7+x+3+y=11+(x+y) chia hết cho 3 => (x+y)={1;4;7;10;13;16;19}
+ 17x3y chia hết cho 4 khi 3y chia hết cho 4 => 3y={32; 36} => y={2;6}
Thay lần lượt các giá trị của y vào lần lượt các giá trị của x+y sẽ tìm được các giá trị x tương ứng
b/ 34x5y chia hết cho 36 khi đồng thời chia hết cho 4 và 9. Lý luận tương tự như câu a
Bạn có thể tham khảo cách của mình:
Do vai trò bình đẳng của x,y nên ta có thể giả sử x>= y
-TH x=y:
x+1 chia hết cho y
<=> y+1 chia hết cho y
=> y thuộc ước của 1. Mà y thuộc N nên y=1. Do đó ta có x=1 (vì x=y)
Ta có cặp so (x;y)=(1;1)
-TH x>y:
Giả sử x-y=k (k thuộc N* vì x,y là số tự nhiên, x>y). Suy ra y=x-k
Thay vào ta có: y+1 chia hết cho x
<=> x-k+1 chia hết cho x
Do x>k nên x-k+1 > 0, x là số tự nhiên, x-k+1 chia hết cho x
<=> 1-k =0 hoặc >0
+Nếu 1-k=0 thì k=1
Thay vào ta có: x+1 chia hết cho y
<=>1+y+1 chia hết cho y <=> y + 2 chia hết cho y. Suy ra y thuộc ước của 2
=> y={1;2}. Vậy x={2;3} tương ứng.
Ta có cặp số x;y=(1;2);(2;3)
+Nếu 1-k>0:
Do k thuộc N* nên 1-k>0 là vô lý
Kết luận: Các cặp số (x;y) phải tìm: (1;1);(1;2);(2;1);(2;3);(3;2)
Vì vai trò của x, y bình đẳng nên có thể giả sử x≤yx≤y.
- Nếu x = 1 thì x+1=2⋮yx+1=2⋮y ⇒y=1⇒y=1 hoặc 2 ⇒(x,y)=(1,1),(1,2)⇒(x,y)=(1,1),(1,2).
- Nếu x≥2x≥2 thì 2≤x≤y2≤x≤y
Có ⎧⎨⎩x+1⋮yy+1⋮x{x+1⋮yy+1⋮x
⇒(x+1)(y+1)=(xy+x+y+1)⋮xy⇒(x+1)(y+1)=(xy+x+y+1)⋮xy ⇒(x+y+1)⋮xy⇒(x+y+1)⋮xy
⇒x+y+1xy=1x+1y+1xy⇒x+y+1xy=1x+1y+1xy là số nguyên dương.
Mà 2≤x≤y2≤x≤y nên 1x+1y+1xy≤12+12+14=541x+1y+1xy≤12+12+14=54
Từ đó suy ra 1x+1y+1xy=11x+1y+1xy=1 (1)
⇒1=1x+1y+1xy≤1x+1x+12x=52x⇒1=1x+1y+1xy≤1x+1x+12x=52x ⇒2x≤5⇒2x≤5 ⇒⇒ x = 2
Thay vào (1) ta có 12+1y+12y=112+1y+12y=1 ⇒y=3⇒y=3
Vậy các cặp số (x, y) phải tìm là (1, 1), (1, 2), (2, 1), (2, 3), (3, 2).
35x8y chia hết cho 18 nên 35x8y chia hêt cho 2 và 9
=>3+5+8+x+y chia hết cho 9 và y chia hết cho 2
=>x+y+16 chia hết cho 9 và y chia hết cho 2
TH1: y=0
=>x=2
TH2: y=2
=>x=0 hoặc x=9
TH3: y=4
=>x+20 chia hết cho 9
=>x=7
TH4: y=6
=>x+22 chia hết cho 9
=>x=5
TH5: y=8
=>x+24 chia hết cho 9
=>x=3