Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này dễ mà!
Có: \(xy+2x=27-3y\)
\(x\left(y+2\right)=33-3\left(y+2\right)\)
\(x\left(y+2\right)+3\left(y+2\right)=33\)
\(\left(x+3\right)\left(y+2\right)=33\)
Đến phần này chắc bạn tự làm đc rồi nhỉ
xy+3x-2y=11
<=>xy+3x-2y-6=5
<=>x(y+3)-2(y+3)=5
<=>(x-2)(y+3)=5
Lập bảng,tìm đc 4 cặp (x;y) thỏa mãn
xy + 3x - 2y = 11
xy + 3x - 2y + 6 = 11 + 6
x(y + 3) - 2(y + 3) = 17
(x - 2)(y + 3) = 17
(x - 2)(y + 3) = -17.(-1) = (-1).(-17) = 1.17 = 17.1
Vì -2 ; 3 là các số nguyên
Vậy có 4 cặp (x;y) thõa mãn
Theo đề bài, ta có: \(x+2xy-y=4\)
\(\Rightarrow x\left(1+2y\right)-y=4\)
\(\Rightarrow2x\left(2y+1\right)-2y=8\)
\(\Rightarrow2x\left(2y+1\right)-\left(2y+1\right)=7\)
\(\Rightarrow\left(2y+1\right)\left(2x-1\right)=7\)
Vì \(x,y\in Z\Rightarrow2x-1;2y+1\inƯ\left(7\right)=\left\{\mp1;\mp7\right\}\)
Ta có bảng sau:
2x-1 | 1 | -1 | 7 | -7 |
2y+1 | 7 | -7 | 1 | -1 |
x | 1 | 0 | 4 | -3 |
y | 3 | -4 | 0 | -1 |
Vậy \(\left(x;y\right)\in\left\{\left(1;3\right),\left(0;-4\right),\left(4;0\right),\left(-3;-1\right)\right\}\)
\(x+2xy-y=4\)
\(\Rightarrow2x+2xy-2y=4\)
\(\Rightarrow2x+2y\left(x-1\right)=4\)
\(\Rightarrow2\left[x+y\left(x-1\right)\right]=4\)
\(\Rightarrow x+y\left(x-1\right)=2\)
\(\Rightarrow\left(x-1\right)+y\left(x-1\right)=1\)
\(\Rightarrow\left(x-1\right).\left(1+y\right)=1\)
=>x.(y-2)+3x=11
=>x.(y-2+3)=11
=>x.(y+1)=11
Mà 11=1.11 = 11.1 = (-1).(-11)=(-11).(-1)
Ta có bảng sau:
x | 1 | -1 | 11 | -11 |
y+1 | 11 | -11 | 1 | -1 |
y | 10 | -12 | 0 | -2 |
Vậy có 4 cặp(x;y) thỏa mãn
xy-3x+2y=11
xy-3x+2y=5+6
xy-3x+2y-6=5
<2y+2y>-<3x+6>=5
y<x+2>-3<x+2>=5
<x+2>.<x-3>thuộc ư<5>
ư<5>={1;5}
Vì x+2 lớn hơn hoặc bằng 2
suy ra ta có x+2=5 suy ra x=5-2=3
y-3=1 suy ra y =1+3=4
Vậy ta có 1 cặp số nguyên <x;y> là x=3
y=4
****
\(x^2-3xy+2=y\)
\(\Rightarrow x^2+2=y\left(3x+1\right)\left(1\right)\)
\(\Rightarrow\left(x^2+2\right)⋮\left(3x+1\right)\)
\(\Rightarrow\left(9x^2+18\right)⋮\left(3x+1\right)\)
\(\Rightarrow\left[\left(9x^2-1\right)+19\right]⋮\left(3x+1\right)\)
Ta có \(9x^2-1=\left(3x+1\right)\left(3x-1\right)⋮\left(3x+1\right)\)
\(\Rightarrow19⋮\left(3x+1\right)\) nên \(3x+1\inƯ\left(19\right)\)
Lập bảng:
3x+1 | 19 | 1 | -19 | -1 |
x | 6 | 0 | \(\dfrac{-20}{3}\left(l\right)\) | \(\dfrac{-2}{3}\left(l\right)\) |
Với \(x=6\). (1) \(\Rightarrow y=\dfrac{x^2+2}{3x+1}=\dfrac{6^2+2}{3.6+1}=2\)
Với \(x=0\). (1) \(\Rightarrow y=\dfrac{x^2+2}{3x+1}=\dfrac{0^2+2}{3.0+1}=2\)
Vậy các cặp số (x;y) thỏa điều kiện ở đề bài là \(\left(6;2\right),\left(0;2\right)\)
- Với \(y=0\Rightarrow x^2+x=3^0+1=2\)
\(\Rightarrow x^2+x-2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
- Với \(y< 0\Rightarrow3^{2019y}\) không phải số nguyên \(\Rightarrow3^{2019y}+1\) không phải số nguyên (loại)
- Với \(y>0\Rightarrow3^{2019y}⋮3\Rightarrow3^{2019y}+1\) chia 3 dư 1
Mà \(x^2+x=x\left(x+1\right)\) là tích 2 số nguyên liên tiếp nên chia 3 chỉ có thể dư 0 hoặc 2
\(\Rightarrow x^2+x\ne3^{2019y}+1\) với mọi \(y>0\) \(\Rightarrow\) phương trình ko có nghiệm nguyên
Vậy pt đã cho có đúng 2 cặp nghiệm nguyên là \(\left(x;y\right)=\left(-2;0\right);\left(1;0\right)\)
Ta có : xy - 4x - 3y = 5
=> xy - 4x - 3y + 12 = 5 + 12
=> x(y - 4) - 3(y - 4) = 17
=> (x - 3)(y - 4) = 17
Vì x;y \(\inℤ\Rightarrow x-3;y-4\inℤ\)
Khi đó ta có 17 = 1.17 = (-1).(-17)
Lập bảng xét các trường hợp
Vậy các cặp (x;y) thỏa mãn là (4;21) ; (20;5) ; (2;-13) ; (-14;3)