K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2021

\(x^2+x+13=y^2\\ \Leftrightarrow x^2-y^2+x+13=0\\ \Leftrightarrow4x^2-4y^2+4x+52=0\\ \Leftrightarrow\left(2x+1\right)^2-4y^2=51\\ \Leftrightarrow\left(2x+1-2y\right)\left(2x+1+2y\right)=51=51\cdot1=17\cdot3\left(x,y>0\right)\)

Tới đây giải ra các trường hợp thui

 

NV
16 tháng 4 2022

\(\Leftrightarrow4.25^x-4.5^x+1=4y^4+8y^3+12y^2+16y+41\)

\(\Leftrightarrow\left(2.5^x-1\right)^2=4y^4+8y^3+12y^2+16y+41\)

Ta có:

\(4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+2\right)^2+8y+37>\left(2y^2+2y+2\right)^2\)

\(4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+5\right)^2+4\left(y-1\right)\left(3y+4\right)\ge\left(2y^2+2y+5\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+3\right)^2\\4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+4\right)^2\\4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+5\right)^2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y^2-y-8=0\left(\text{không có nghiệm nguyên}\right)\\8y^2-25=0\left(\text{không có nghiệm nguyên}\right)\\\left(y-1\right)\left(3y+4\right)=0\end{matrix}\right.\) 

\(\Rightarrow y=1\)

Thế vào pt ban đầu: \(25^x-5^x=20\)

Đặt \(5^x=t>0\Rightarrow t^2-t-20=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-4\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow5^x=5\Rightarrow x=1\)

18 tháng 4 2022

Em cám ơn  thầy nhiều lắm ạ!

NV
15 tháng 4 2022

\(\Leftrightarrow x^2y^2+22xy+141=4\left(x^2+6xy+9y^2\right)+7\left(x+3y\right)\)

\(\Leftrightarrow\left(xy+11\right)^2+20=4\left(x+3y\right)^2+7\left(x+3y\right)\)

\(\Leftrightarrow16\left(xy+11\right)^2+320=64\left(x+3y\right)^2+112\left(x+3y\right)\)

\(\Leftrightarrow\left(4xy+44\right)^2+369=\left(8x+24y+7\right)^2\)

\(\Leftrightarrow\left(8x+24y-4xy-37\right)\left(8x+24y+4xy+51\right)=369\)

Pt ước số

15 tháng 4 2022

Dạ em cám ơn thầy, em hiểu rồi ạ

 

30 tháng 10 2019

Nguyễn Linh Chi : cô làm cách đó là thiếu nghiệm rồi cô

\(\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)

\(\Leftrightarrow x^4+x^2+x^2y^2+y^2-4x^2y=0\)

\(\Leftrightarrow\left(x^4-2x^2y+y^2\right)+\left(x^2-2x^2y+x^2y^2\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)^2+\left(x\left(y-1\right)\right)^2=0\)

\(\Leftrightarrow x^2-y=x\left(y-1\right)=0\)

\(\Leftrightarrow x^2-y-xy+x=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=-1\end{cases}}\)

+) x = -1 suy ra y = 1

+) x = y . từ đó tìm được \(\orbr{\begin{cases}x=y=0\\x=y=1\end{cases}}\)

30 tháng 10 2019

ai tích mình sai vậy ạ, xin lí do

6 tháng 8 2020

Để cho gọn, đặt {x2=ay2=b

(a+4b+28)2−17a2−17b2=238b+833

\(\Leftrightarrow\)a2+16b2+784+8ab+56a+224b−17a2−17b2=238b+833

\(\Leftrightarrow\)16a2+b2+49−8ab−56a+14b=0

\(\Leftrightarrow\)(4a−b−7)2=0 ⇔4a−b−7=0⇔4x2−y2−7=0

\(\Leftrightarrow\)(2x−y)(2x+y)=7

Do 2x+y>2x−y với mọi x, y nguyên dương và 2x+y>0 với mọi x, y nguyên dương

\(\Rightarrow\){2x−y=12x+y=7 \(\Rightarrow\){x=2y=3

Vậy pt có cặp nghiệm nguyên dương duy nhất (x;y)=(2;3)

#Shinobu Cừu

7 tháng 1 2017

2/ a/ \(y\left(x-1\right)=x^2+2\)

\(\Leftrightarrow y\left(x-1\right)+1-x^2=3\)

\(\Leftrightarrow\left(x-1\right)\left(y-1-x\right)=3\)

Làm tiếp nhé

b/ \(x^2+xy+y^2=x^2y^2\)

\(\Leftrightarrow4x^2+4xy+4y^2=4x^2y^2\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)-\left(4x^2y^2+4xy+1\right)=-1\)

\(\Leftrightarrow\left(2x+2y\right)^2-\left(2xy+1\right)^2=-1\)

\(\Leftrightarrow\left(2x+2y+2xy+1\right)\left(2x+2y-2xy-1\right)=-1\)

Làm tiếp nhé

7 tháng 1 2017

1/ \(x^2+x+19=z^2\)

\(\Leftrightarrow4x^2+4x+76=4z^2\)

\(\Leftrightarrow\left(2x+1\right)^2-4z^2=-75\)

\(\Leftrightarrow\left(2x+1-2z\right)\left(2x+1+2z\right)=-75\)

Tới đây đơn giản rồi làm tiếp đi nhé