K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2017

Đáp án cần chọn là: B

A = 3 n − 5 n + 4 = 3 n + 12 − 12 − 5 n + 4 = 3 n + 4 + − 17 n + 4 = 3 n + 4 n + 4 + − 17 n + 4 = 3 + − 17 n + 4

Vì nZ nên để AZ thì n + 4U(−17) = {±1;±17}

Ta có bảng:

Vậy n{−21;−5;−3;13}

20 tháng 1 2018

ta có n-2 \(\in\)Ư(5)={-1;-5;1;5}

Ta có bảng giá trị

n-2-1-515
n1-337

Vậy n={1;-3;3;7}

b, ta có n-5 chia hết cho n-4

\(\Rightarrow\)(n-4)-1 chia hết cho n-4

Suy ra 1 chia hết cho n-4 vì n-4 chia hết cho n-4

Suy ra n-4\(\in\)Ư(1)={-1;1}

ta có bảng giá trị

n-4-11
n35

Vậy n={3;5}


 

4 tháng 7 2019

a) Ta có:

Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4

b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)

+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)

c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)

Để A \(\in\)Z <=> 1 \(⋮\)n + 4

      <=> n + 4 \(\in\)Ư(1) = {1; -1}

Lập bảng :

n + 41 -1
   n-3 -5

Vậy ....

4 tháng 7 2019

1a) Để A là phân số thì n \(\ne\)- 4 ; n 

b) + Khi n = 1 

=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)

+ Khi n = -1 

=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)

 c) Để \(A\inℤ\)

=> \(n+5⋮n+4\)

=> \(n+4+1⋮n+4\)

Ta có : Vì \(n+4⋮n+4\)

=> \(1⋮n+4\)

=> \(n+4\inƯ\left(1\right)\)

=> \(n+4\in\left\{\pm1\right\}\)

Lập bảng xét các trường hợp

\(n+4\)\(1\)\(-1\)
\(n\)\(-3\)\(-5\)

Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)

15 tháng 11 2023

Vũ™©®×÷|

20 tháng 2 2020

Bài 2:

a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3

b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3

\(\frac{n+4}{n-3}\)\(\frac{n-3+7}{n-3}\)\(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3

=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}

=> n\(\in\){ 4; 10; 2; -4}

Vậy...

c) Bn thay vào r tính ra

20 tháng 2 2020

la 120

24 tháng 2 2017

5/a,

ta cần c/m: a/b=a +c/b+d

<=> a(b+d) = b(a+c)

      ab+ad = ba+bc

      ab-ba+ad=bc

                ad=bc

a/b=c/d

vậy đẳng thức được chứng minh

b, Tương tự

Câu 1:Kết quả của phép tính (-5) + (-6) + (-7) là ...........Câu 2:Với n là số tự nhiên thỏa mãn 2n  = 256 .Khi đó n = ...................... Câu 3:Cho số a nguyên dương khi đó kết quả của phép tính 0:(2a) bằng .....................Câu 4:Nếu x+13=5 thì x bằng .................Câu 5:Biết: 15.23+4.32-5.7=a2 , trong đó a là số tự nhiên. Khi đó giá trị của a là ...................Câu 6:Biết x thuộc tập hợp các ước...
Đọc tiếp

Câu 1:
Kết quả của phép tính (-5) + (-6) + (-7) là ...........

Câu 2:
Với n là số tự nhiên thỏa mãn 2n  = 256 .Khi đó n = ...................... 

Câu 3:
Cho số a nguyên dương khi đó kết quả của phép tính 0:(2a) bằng .....................

Câu 4:
Nếu x+13=5 thì x bằng .................

Câu 5:
Biết: 15.23+4.32-5.7=a2 , trong đó a là số tự nhiên. Khi đó giá trị của a là ...................

Câu 6:
Biết x thuộc tập hợp các ước của 36 và \(x\ge6\) Khi đó có tất cả ................ giá trị của x thỏa mãn

Câu 7:
Kết quả của phép tính: \(5.\left(27-17\right)^2-6^{11}:6^3:6^6\) bằng .....................

Câu 8:
Số tự nhiên n lớn nhất có 3 chữ số khi chia cho 8 thì dư 7 còn chia 31 thì dư 28. Vậy giá trị của n là ................

Câu 9:
Cho số nguyên n, biết n thỏa mãn: \(n^2+3n-13\) chia hết cho \(n+3\) Vậy giá trị nhỏ nhất của n là ...............

Câu 10:
Tập hợp các số nguyên tố p để p+10 và p+14 đều là các số nguyên tố là S={...............} 
(Nhập các giá trị theo thứ tự tăng dần,ngăn cách nhau bởi dấu ";" )

4
7 tháng 3 2016

vòng mấy đây bạn

7 tháng 3 2016

vòng 15 bạn nhá

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìmgiá trị lớn nhất đó.Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn...
Đọc tiếp

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.

Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìm

giá trị lớn nhất đó.
Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.
Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn nhất.
Bài tập 7. Tìm giá trị nhỏ nhất của của biểu thức sau: A= \(\frac{6\cdot n-1}{3\cdot n-2}\) (với n là số nguyên )

Bài tập 8: cho phân số A= \(\frac{n+1}{n-3}\) . Tìm n để có giá trị lớn nhất.
Bài tập 9: ho phân số: p= \(\frac{6\cdot n+5}{3\cdot n+2}\) (n \(\in\)  N Với giá trị nào của n thì phân số p
có giá trị lớn nhất? tìm giá trị lớn nhất đó.

0
3 tháng 5 2021

a)n=5

b)X=16;-10;2;4

c)x=113;39;5;3;1;-1;-35;-109

23 tháng 11 2021

Answer:

a) \(\left(n+2\right)⋮\left(n-3\right)\)

\(\Rightarrow\left(n-3+5\right)⋮\left(n-3\right)\)

\(\Rightarrow5⋮\left(n-3\right)\)

\(\Rightarrow n-3\) là ước của \(5\), ta có:

Trường hợp 1: \(n-3=-1\Rightarrow n=2\)

Trường hợp 2: \(n-3=1\Rightarrow n=4\)

Trường hợp 3: \(n-3=5\Rightarrow n=8\)

Trường hợp 4: \(n-3=-5\Rightarrow n=-2\)

b) Ta có: \(x-3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

\(\Rightarrow x\in\left\{4;16;2;-10\right\}\)

Vậy để \(x-3\inƯ\left(13\right)\Rightarrow x\in\left\{4;16;2;-10\right\}\)

c) Ta có: \(x-2\inƯ\left(111\right)\)

\(\Rightarrow x-2\in\left\{\pm111;\pm37;\pm3;\pm1\right\}\)

\(\Rightarrow x\in\left\{-99;-35;1;1;3;5;39;113\right\}\)

d) \(5⋮n+15\Rightarrow n+15\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Trường hợp 1: \(n+15=-1\Rightarrow n=-16\)

Trường hợp 2: \(n+15=1\Rightarrow n=-14\)

Trường hợp 3: \(n+15=5\Rightarrow n=-10\)

Trường hợp 4: \(n+15=-5\Rightarrow n=-20\)

Vậy \(n\in\left\{-14;-16;-10;-20\right\}\)

e) \(3⋮n+24\)

\(\Rightarrow n+24\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n\in\left\{-23;-25;-21;-27\right\}\)

f) Ta có:  \(x-2⋮x-2\)

\(\Rightarrow4\left(x-2\right)⋮x-2\)

\(\Rightarrow4x-8⋮x-2\)

\(\Rightarrow\left(4x+3\right)-\left(4x-8\right)⋮x-2\)

\(\Rightarrow11⋮x-2\)

\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(\Rightarrow x\in\left\{3;13;1;-9\right\}\)