K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 3 2020

Lời giải:

a) ĐK: $x\neq \pm 2$

b)

\(P=\left[\frac{x^2+2x+4-(x-2)(x+1)}{(x-2)(x^2+2x+4)}-\frac{3}{(x-2)(x^2+2x+4)}\right].\frac{x^2+2x+4}{x^2-4}\)

\(=\frac{3x+6-3}{(x-2)(x^2+2x+4)}.\frac{x^2+2x+4}{(x-2)(x+2)}=\frac{3x+3}{(x+2)(x-2)^2}\)

c)

Để $P$ nhận giá trị dương thì $\frac{3(x+1)}{(x+2)(x-2)^2}>0$. Mà $(x-2)^2>0$ với $x\neq \pm 2$ nên cần tìm $x$ để $\frac{3(x+1)}{x+2}>0$

\(\Rightarrow \left[\begin{matrix} \left\{\begin{matrix} 3(x+1)>0\\ x+2>0\end{matrix}\right.\\ \left\{\begin{matrix} 3(x+1)< 0\\ x+2< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x>-1\\ x>-2\end{matrix}\right.\\ \left\{\begin{matrix} x< -1\\ x< -2\end{matrix}\right.\end{matrix}\right.\) hay \(\left[\begin{matrix} x>-1\\ x< -2\end{matrix}\right.\)

Vậy $x>-1; x\neq 2$ hoặc $x< -2$

có  A = \(a^4-2a^3+3a^2-4a+5\)

 \(\Leftrightarrow A=\left(a^2\right)^2-2a^2.a+a^2+2a^2-4a+2+3\)

\(\Leftrightarrow A=\left(a^2-a\right)^2+\left(\sqrt{2}.a-\sqrt{2}\right)^2+3\)

\(\Rightarrow\) A luôn luôn lớn hơn hoặc bằng 3 với mọi giá trị của x 

=> giá trị nhỏ nhất của A = 3 khi

\(\left(a^2-a\right)^2=0\) \(\Leftrightarrow a^2-a=0\Leftrightarrow a\left(a-1\right)=0\) )

\(\Rightarrow\) a= 0 hoặc a= 1

 

Bài 2:

=>ax^3-ax^2-2ax+(b+a)x^2-(b+a)x-2(b+a)+5x+(b+a+2a)x-22+2(b+a) chia hết cho x^2-x-2

=>b+3a+5=0 và b+a=0

=>3a+b=-5 và a+b=0

=>a=-5/2; b=5/2

21 tháng 1 2016

sai đề!!!! Chả bao h có kiểu đề bài ngu người thế này. CMR cái gì cơ? câu hỏi mất đuôi :v

24 tháng 12 2017

Bài 1.

a) ( x - 2)2 - ( x + 3)( x - 3)= 17

=> x2 - 4x + 4 - x2 + 9 - 17 = 0

=> -4x - 4 = 0

=> -4( x + 1 ) = 0

=> x = -1

Vậy,...

b)4( x - 3)2 - ( 2x - 1)( 2x + 1) = 10

=> 4( x2 - 6x + 9) - 4x2 + 1 - 10 = 0

=> - 24x + 36 - 9 = 0

=> -24x + 27 = 0

=> -3( 8x - 9) = 0

=> x = \(\dfrac{9}{8}\)

Vậy,...

c) ( x - 4)2 - ( x - 2)( x + 2)= 36

=> x2 - 8x + 16 - x2 + 4 - 36 = 0

=> -8x - 16 = 0

=> -8( x + 2) = 0

=> x = -2

d) ( 2x + 3)2 - ( 2x + 1)( 2x - 1) = 10

=> 4x2 + 12x + 9 - 4x2 + 1 - 10 = 0

=> 12x = 0

=> x = 0

Vậy,...

Bài 2.

\(\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\)

a) ĐKXĐ : ( x + 1)( 2x - 6) # 0

=> 2( x + 1)( x - 3) # 0

=> x # -1 ; x # 3

Vậy,...

b) Để P = 1

=> \(\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=1\)

=> \(\dfrac{3x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{3x}{2\left(x-3\right)}=1\)

=> 3x = 2x - 6

=> x = -6 ( thỏa mãn ĐKXĐ)

Vậy,...

Bài 3.

P = \(\dfrac{x}{x-1}+\dfrac{x^2+1}{1-x^2}\)

a) Để P có nghĩa tức P xác định .

ĐKXĐ : x - 1 # 0 => x # 1

* 1 - x2 # 0 => x # 1 ; x # -1

Vậy,...

b) P = \(\dfrac{x}{x-1}+\dfrac{x^2+1}{1-x^2}\)

P = \(\dfrac{x^2+x-x^2-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x+1}\)( x# 1; x# -1)

c) Để P = -1 thì :

\(\dfrac{1}{x+1}=-1\)

=> -x - 1 = 1

=> x = -2 ( thỏa mãn ĐKXĐ )

Vậy,...