\(a+1\); \(4a^2+8a+5\); \(6...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

a\(\in\)N\(\Rightarrow\)a+1\(\in\)N

4a2+8a+5=4(a+1)2+1 \(\in\)N nếu a\(\in\)N

6a2+12a+7=6(a+1)2+1 \(\in\)N nếu a\(\in\)N

Vậy \(\forall\)a\(\in\)N đều t/m

30 tháng 4 2017

tìm a để các số trên là số nguyên tố mà

22 tháng 4 2019

a2 + 8a + 5 thành 4a2 + 8a + 5 nha

trên mạng có đầy

18 tháng 3 2018

LEGGO chắc ghi nhầm ở chỗ \(4a^2+8a+4\) => sửa lại \(4a^2+8a+5\)

AH
Akai Haruma
Giáo viên
15 tháng 3 2018

Không tồn tại số $a$ thỏa mãn điều kiện đề bài vì với mọi \(a\in\mathbb{N}\Rightarrow 4a^2+8a+4>2\) và \(4a^2+8a+4\vdots 2\) nên \(4a^2+8a+4\) không thể là số nguyên tố.

3 tháng 5 2020

tao chiu

18 tháng 8 2020

1/ 2a + 2b = 2( a + b )

2/ 3a - 6b - 9c = 3( a - 2b - 3c )

3/ 5ax - 15ay + 20a = 5a( x - 3y + 4 )

4/ 3a2x - 6a2y + 12a = 3a( ax - 2ay + 4 )

5/ 4a( x - 5 ) - 2( 5 - x ) = 4a( x - 5 ) + 2( x - 5 ) = ( x - 5 )( 4a + 2 ) = ( x - 5 )2( 2a + 1 )

6. -3a( x - 3 ) + ( 3 - x ) = 3a( 3 - x ) + 1( 3 - x ) = ( 3a + 1 )( 3 - x )

7/ xm+1 - xm = xm( x + 1 )

8/ xm+2 - x2 = x2( xm - 1 ) 

27 tháng 3 2018

Bài 1:

a). Ta có: a < b

=> -6a > -6b

mà 3 > 1

=> \(3-6a>1-6b\)

b)

Ta có: a < b

=> a - 2 < b - 2

=> \(7\left(a-2\right)< 7\left(b-2\right)\)

c)

Ta có: a < b

=> -2a > -2b

=> 1 - 2a > 1 - 2b

\(\Rightarrow\dfrac{1-2a}{3}>\dfrac{1-2b}{3}\)

1 tháng 4 2018

Bài 2:

a) Ta có:

a+23<b+23

\(\Leftrightarrow a< b\)

b) Ta có:

\(-12a>-12b\)

\(\Leftrightarrow a< b\)

c) Ta có:

\(5a-6\ge5b-6\)

\(a\ge b\)

d) Ta có:

\(\dfrac{-2a+3}{5}\le\dfrac{-2b+3}{5}\)

\(\Leftrightarrow-2a+3\le-2b+3\)

\(\Leftrightarrow a\ge b\)