K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(25-y^2=2020\left(x-2019\right)^2\)

\(\frac{25-y^2}{2020}=\left(x-2019\right)^2\)

\(\pm\sqrt{\frac{25-y^2}{2020}}=x-2019\)

\(x-2019=\pm\sqrt{\frac{25-y^2}{2020}}\)

\(x-2019=\orbr{\begin{cases}\sqrt{\frac{25-y^2}{2020}}\\-\sqrt{\frac{25-y^2}{2020}}\end{cases}}\)

\(x=-\sqrt{\frac{25-y^2}{2020}}+2019\)

\(x=\sqrt{\frac{25-y^2}{2020}}+2019;-\sqrt{\frac{25-y^2}{2020}}+2019\)

=> ko ra :v 

7 tháng 3 2020

có y2\(\ge\)0

Nên 25-y2\(\le\)25

Vậy 2020(x-2019)2\(\le\)25

(x-2019)2\(\le\)\(\frac{5}{404}\)<1

=>x-2019\(\le\)0 => x=2019

Thay x=2019 vào đẳng thức

=> 25-y2=2020(2019-2019)2

25-y2=0

y2=25

Vậy y=5

\(\le\)

8 tháng 11 2019

Ta có vế phải không âm nên vế trái không âm tức là \(y^2\le25\Leftrightarrow-5\le y\le5\)

Mặt khác thì vế phải chia hết cho 5 nên vế trái chia hết cho 5,suy ra y={-5;0;5}

+)Với y=-5 =>2020(x-2019)2=0=>x=2019

+)Với y=0=> 2020(x-2019)2=25,trường hợp này không tìm được x

+)Với y=-5 thì 2020(x-2019)2=0=>x=2019

Vậy giá trị thỏa mãn của (x;y) là (2019;5);(2019;-5)

11 tháng 11 2019

sao ko xét th 2,4 VP cũng chia hết cho 2,4 mà

4 tháng 4 2020

\(\text{Ta có:}\left(x+2019\right)^{2018}\ge0với\forall x\)

            \(|y-2020|\ge0với\forall y\)

\(\Rightarrow\)\(\left(x+2019\right)^{2018}+\)\(|y-2020|\ge0với\forall x,y\)

\(\text{Mà }\)\(\left(x+2019\right)^{2018}+\)\(|y-2020|=0\)\(\text{(Theo đề bài)}\)

\(\Rightarrow\hept{\begin{cases}\left(x+2019\right)^{2018}=0\\|y-2020|=0\end{cases}\Rightarrow\hept{\begin{cases}x+2019=0\\y-2020=0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=-2019\\y=2020\end{cases}}\)

\(\Rightarrow M=x+y=-2019+2020=1\)

21 tháng 7 2019

\(\text{a) }\left(x-1\right)^2+\left|y+3\right|=0\)

Vì \(\left(x-1\right)^2\text{ và }\left|y+3\right|\text{ đều }\ge0\)

nên để \( \left(x-1\right)^2+\left|y+3\right|=0\)

thì \(\left(x-1\right)^2=0\text{ và }\left|y+3\right|=0\)

\(\Rightarrow x-1=0\text{ và }y+3=0\)

\(\Rightarrow x=1\text{ và }y=-3\)

\(\text{b) }\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)

\(\text{vì }\left(x^2-9\right)^2\text{ và }\left|2-6y\right|^5\text{ đều }\ge0\)

Nên để \(\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)

Thì \(\left(x^2-9\right)^2+\left|2-6y\right|^5=0\)

hay \(\left(x^2-9\right)^2=0\text{ và }\left|2-6y\right|^5=0\)

\(\Rightarrow x^2-9=0\text{ và }2-6y=0\)

\(\Rightarrow x^2=9\text{ và }6y=2\)

\(\Rightarrow x=\pm3\text{ và }y=\frac{1}{3}\)

Câu c) làm tương tự nha