Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 3x = 2y => x/2 = y/3
7x = 5z => x/5 = z/7
=> x/2 = y/3 ; x/5 = z/7
=> x/10 = y/15 ; x/10 = z/21
=> x/10 = y/15 = z/21
Áp dụng tính chất dãy tỉ số bằng nhau :
x/10 = y /15 = z/21 = (x-y+z)/(10-15+21) = 32/16 = 2
đến đây xét x,y,z
Câu b tương tự
a) Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{24}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{48}=\frac{5x+y-2z}{50+6-48}=\frac{28}{8}=\frac{7}{2}\)
\(\Rightarrow x=\frac{7}{2}.10=35\)
\(y=\frac{7}{2}.6=21\)
\(z=\frac{7}{2}.24=84\)
b) Ta có: \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)
=> x = 3.15 = 45
y = 3.20 = 60
z = 3.28 = 84
c) Ta có: \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3};7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
=> x = 2.10 = 20
y = 2.15 = 30
z = 2.21 = 42
d) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12\left(x+y+z\right)}{18+16+15}=\frac{12.49}{49}=12\)
=> 12x = 216 => x =18
12y = 192 => y = 16
12z = 180 => z = 15
e) \(\frac{x-1}{2}=\frac{2\left(x-1\right)}{2}=\frac{2x-2}{2};\frac{y-2}{3}=\frac{3\left(y-2\right)}{3}=\frac{3y-6}{3}\)
=> 2x-2/4 = 3y-6/9 = z-3/4
=> (2x-2+3y-6-z+3)/(4+9-4) = (49-5)/9 = 44/9
=> x-1 = 44/9 .2 = 88/9
x = 97/9
=> y-2 = 44/9 . 3 = 44/3
y = 50/3
=> z - 3 = 44/9 . 4 = 176/9
z = 203/9
Vậy ...
a) Do \(2x=3y=-2z\) nên \(\frac{2x}{1}=\frac{3y}{1}=\frac{4z}{-2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{2x}{1}=\frac{3y}{1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1-1+\left(-2\right)}=\frac{48}{-2}=-24\) ( do 2x - 3y + 4z = 48 )
Khi đó:
\(\frac{2x}{1}=-24\)\(\Rightarrow2x=-24\)\(\Rightarrow x=\frac{-24}{2}=-12\)
\(\frac{3y}{1}=-24\)\(\Rightarrow3y=-24\)\(\Rightarrow y=\frac{-24}{3}=-8\)
\(\frac{4z}{-2}=-24\)\(\Rightarrow-2z=-24\)\(\Rightarrow z=\frac{-24}{-2}=12\)
Vậy x = -12 ; y = -8 ; z = 12
Theo đề bài, ta có:
\(3x=4y;3y=4z\) hay \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{4}\) và 2x+3y-5z=55
\(\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{12}=\frac{z}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{16}=\frac{2x+3y-2z}{2.9+3.12-2.16}=\frac{55}{22}=\frac{5}{2}\)
- \(\frac{x}{9}=\frac{5}{2}.9=\frac{45}{2}\)
- \(\frac{y}{12}=\frac{5}{2}.12=30\)
- \(\frac{z}{16}=\frac{5}{2}.16=40\)
Vậy \(x=\frac{45}{2},y=30,z=40\)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)
Do đó: x=20; y=30; z=42
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)
Do đó: x-1=10; y-2=15; z-3=20
=>x=11; y=17; z=23
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5
=> x-1/2 = 5 => x-1=5 => x=6
y-2/3 = 5 => y-2 = 15 => y =17
z-3/4=5 => z-3=20 => z=23
2x=3y suy ra y=2/3.x
3x=4z suy ra z=3/4.x
thay 2 cái trên vào x+y-z=72 ta có: x+2/3.x-3/4.x=72
x(1+2/3-3/4)=72
x=864/11
thay x=864/11 vào y=2/3x và z=3/4x ta có:
y=2/3.864/11=576/11
z=3/4.864/11=648/11
vậy :...
Ta có: \(\hept{\begin{cases}2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\Leftrightarrow\frac{x}{12}=\frac{y}{8}\\3x=4z\Leftrightarrow\frac{x}{4}=\frac{z}{3}\Leftrightarrow\frac{x}{12}=\frac{z}{9}\end{cases}}\)
\(\Rightarrow\frac{x}{12}=\frac{y}{8}=\frac{z}{9};x+y-z=72\)
Tính chất dãy tỉ số bằng nhau:
\(\frac{x}{12}=\frac{y}{8}=\frac{z}{9}=\frac{x+y-z}{12+8-9}=\frac{72}{11}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{12}=\frac{72}{11}\Leftrightarrow x=\frac{12.72}{11}=\frac{864}{11}\\\frac{y}{8}=\frac{72}{11}\Leftrightarrow y=\frac{72.8}{11}=\frac{576}{11}\\\frac{z}{9}=\frac{72}{11}\Leftrightarrow z=\frac{72.9}{11}=\frac{648}{11}\end{cases}}\)
Vậy \(\left(x,y,z\right)=\left(\frac{864}{11};\frac{576}{11};\frac{648}{11}\right)\)