Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}\cdot2^x+2^x\cdot2^2=2^8+2^5\)
\(2^x\left(\frac{1}{2}+4\right)=2^8+2^5\)
\(2^x\cdot\frac{9}{2}=288\)
\(2^x=64\)
\(2^x=2^6\)
\(x=6\)
\(9^x:3^x=3^7\)
\(3^{2x}:3^x=3^7\)
\(3^x=3^7\)
\(x=7\)
\(7^{x+2}+2\cdot7^{x-1}=345\)
\(7^x\cdot7^2+2\cdot7^x:7=345\)
\(7^x\left(7^2+\frac{2}{7}\right)=345\)
\(7^x\cdot\frac{345}{7}=345\)
\(7^x=7\)
\(x=1\)
a) 1/2.2^x + 2^x+2 = 256 + 32
1/2.2^x + 2^2.2^x=288
2^x(1/2+4)= 288
2^x.4,5=288
2^x= 288:4,5
2^x=64=2^6
x=6
\(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^8=0\)
\(\Leftrightarrow\left(2x-1\right)^6\left[1-\left(2x-1\right)^2\right]=0\)
\(\Rightarrow2x-1=0\)hoặc \(2x-1=1\)hoặc \(2x-1=-1\)
\(\Rightarrow x=\frac{1}{2}\)hoặc \(x=1\)hoặc \(x=0\)
a/ BSCNN (12, 25, 30) = 22.52.3 = 4.25.3 = 300
=> X=300
b/ (3x-24).73=2.73 <=> 3x-16=2.74:73
<=> 3x-16=2.7 => 3x-16=14 => 3x=30 => x=10
c/ /x-5/=16+2.(-3) <=> /x-5/=16-6 <=> /x-5/=10 => x-5=\(\pm\)10
=> x=15 và x=-5
Tìm số tự nhiên \(x\) , biết :
a) \(123-5\left(x+4\right)=38\)
b) \(\left(3.x-2^4\right).7^3=2.7^4\)
a) \(123-5\left(x+4\right)=38\)
\(5\left(x+4\right)=123-38\)
\(5\left(x+4\right)=85\)
\(x+4=85:5\)
\(x+4=17\)
\(x=17-4\)
\(x=13\)
Vậy \(x=13\).
b) \(\left(3x-2^4\right)\cdot7^3=2\cdot7^4\)
\(3x-16=2\cdot7^4:7^3\)
\(3x-16=2\cdot7\)
\(3x-16=14\)
\(3x=14+16\)
\(3x=30\)
\(x=30:3\)
\(x=10\)
Vậy \(x=10\).
Đặt là a, b nhá
\(a)\) \(7^{x-1}-2.7^{100}=5.7^{100}\)
\(\Leftrightarrow\)\(7^{x-1}=5.7^{100}+2.7^{100}\)
\(\Leftrightarrow\)\(7^{x-1}=7^{100}\left(5+2\right)\)
\(\Leftrightarrow\)\(7^{x-1}=7^{100}.7\)
\(\Leftrightarrow\)\(7^{x-1}=7^{101}\)
\(\Leftrightarrow\)\(x-1=101\)
\(\Leftrightarrow\)\(x=101+1\)
\(\Leftrightarrow\)\(x=102\)
Vậy \(x=102\)
\(b)\) \(5^{x-4}=25\)
\(\Leftrightarrow\)\(5^{x-4}=5^2\)
\(\Leftrightarrow\)\(x-4=2\)
\(\Leftrightarrow\)\(x=2+4\)
\(\Leftrightarrow\)\(x=6\)
Vậy \(x=6\)
Chúc bạn học tốt ~
\(7^{x-1}-2.7^{100}=5.7^{100}\)
\(\Rightarrow7^{x-1}=5.7^{100}+2.7^{100}\)
\(\Rightarrow7^{x-1}=7.7^{100}\)
\(\Rightarrow7^{x-1}=49^{100}\)
\(\Rightarrow7^{x-1}=7^{2^{100}}\)
\(\Rightarrow7^{x-1}=7^{200}\)
\(\Rightarrow x=201\)
Vậy x = 201
\(5^{x-4}=25\)
\(\Rightarrow5^{x-4}=5^2\)
\(\Rightarrow x=6\)
Vậy x = 6
\(\left(2^{100}.5+2^{100}.3\right):2^{101}\)
\(=2^{100}.8:2^{101}\)
\(=2^{100}.2^3:2^{101}\)
\(=2^{103}:2^{101}\)
\(=2^2\)
\(=4\)
\(3^5:3^3+2^2.2^3-14\)
\(=3^2+2^6-14\)
\(=9+64-14\)
\(=59\)
( 3\(\left|x\right|\) - 24 ).73 = 2.74
=> 3\(\left|x\right|\) -24 = 2.74 : 73
=> 3\(\left|x\right|\) - 16 = 2.( 74 : 73 )
=> 3\(\left|x\right|\) - 16 = 2.7
=> 3\(\left|x\right|\) - 16 = 14
=> 3\(\left|x\right|\) = 14 + 16
=> 3\(\left|x\right|\) = 30
=> \(\left|x\right|\) = 30 : 3
=> \(\left|x\right|\) = 10
=> x \(\in\) { -10; 10 }
\(7^{x-1+3}+2.7^{x-1}=345\Leftrightarrow7^{x-1}\left(7^3+2.1\right)=345\)
\(\Leftrightarrow7^{x-1}.345=345\Leftrightarrow7^{x-1}=1\Leftrightarrow7^{x-1}=7^0\Leftrightarrow x-1=0\Rightarrow x=1\)
Vậy x= 1
=> \(7^{x-1}.7^3+2.7^{x-1}=345\)
=> \(7^{x-1}.\left(7^3+2\right)=345\)
=> \(7^{x-1}.345=345\Rightarrow7^{x-1}=1\Rightarrow x-1=0\) => x = 1