Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)
\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)
\(\Rightarrow27>x>18\)
Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)
Vậy....
Để B là số nguyên thì \(-2x+1⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{-2;-4;4;-10\right\}\)
\(A=\frac{5x+9}{x+1}=\frac{5x+5+4}{x+1}\)\(ĐKXĐ:x\ne-1\)
\(=\frac{5x+5}{x+1}+\frac{4}{x+1}\)
\(=\frac{5\left(x+1\right)}{x+1}+\frac{4}{x+1}\)
\(=5+\frac{4}{x+1}\)
\(\Rightarrow A=5+\frac{4}{x+1}\)
Để \(A\in Z\Rightarrow5+\frac{4}{x+1}\in Z\)
\(\Rightarrow x+1\inƯ\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow x=\left\{0;1;3;-2;-3;-5\right\}\)
Bài 1:
a)\(\left(2x+5\right)\left(6y-7\right)=13\)
=>2x+5 và 6y-7 thuộc Ư(13)={13;1;-1;-13}
- Với 2x+5=13 =>x=4 =>6y-7=1 =>y=4/3 (loại)
- Với 2x+5=-13 =>x=-9 =>6y-7=-1 =>y=1 (tm)
- Với 2x+5=-1 =>x=-3 =>6y-7=-13 =>y=-1 (tm)
- Với 2x+5=1 =>x=-2 =>6y-7=13=13 =>y=10/3 (loại)
Vậy các cặp số nguyên (x;y) thỏa mãn là (-9,1);(-3;-1)
2)xy+x+y=0
=>xy+x+y+1=1
=>(xy+x)+(y+1)=1
=>x(y+1)+(y+1)=1
=>(x+1)(y+1)=1
Sau đó bn =>x+1 và y+1 thuộc Ư(1) rồi tính như trên nhé
c)xy-x-y+1=0
=>(x-1)y-x+1=0
=>(x-1)y-x-0+1=0
=>(x-1)(y-1)=0
- Với x-1=0 =>x=1 thì mọi y thuộc Z đều thỏa mãn (vì đề chỉ cho thuộc Z)
- Với y-1=0 =>y=1 thì mọi x thuộc Z đều thỏa mãn
d và e bn phân tích ra tính tương tự
Bài 2:
a)\(A=\frac{x+5}{x+1}=\frac{x+1+4}{x+1}=\frac{x+1}{x+1}+\frac{4}{x+1}=1+\frac{4}{x+1}\in Z\)
=>4 chia hết x+1
=>x+1 thuộc Ư(4)={1;-1;2;-2;4;-4}
Bạn thay x+1={1;-1;2;-2;4;-4} vào rồi tính tiếp
b)\(=\frac{2x+4}{x+3}=\frac{2\left(x+3\right)-2}{x+3}=\frac{2\left(x+3\right)}{x+3}-\frac{1}{x+3}=2-\frac{1}{x+3}\in Z\)
=>2 chia hết x+3
=>x+3 thuộc Ư(2)={1;-1;2-2} tự làm nhé
c)\(C=\frac{4x+4}{2x+4}=\frac{2\left(2x+4\right)-4}{2x+4}=\frac{2\left(2x+4\right)}{2x+4}-\frac{4}{2x+4}=2-\frac{4}{2x+4}\in Z\)
=>4 chia hết 2x+4
=>2x+4 thuộc Ư(4)={1;-1;2;-2;4;-4} tự tính tiếp nhé
Để \(\frac{2x+3}{x-1}\) là số nguyên thì 2x + 3 chia hết cho x - 1
=> 2x - 2 + 5 chia hết cho x - 1
=> 2(x - 1) + 5 chia hết cho x - 1
Mà 2(x - 1) chia hết cho x - 1 nên 5 chia hết cho x - 1
=> x - 1 thuộc Ư của 5
=> x - 1 thuộc -5; -1 ; 1 ; 5
=> x thuộc -4 ; 0 ; 2 ; 6
Vậy x thuộc -4;0;2;6 thì \(\frac{2x+3}{x-1}\) có giá trị nguyên
Giải:
Để \(\frac{2x+3}{x-1}\in Z\Rightarrow2x+3⋮x-1\)
Ta có: \(2x+3⋮x-1\)
\(\Rightarrow\left(2x-2\right)+5⋮x-1\)
\(\Rightarrow2\left(x-1\right)+5⋮x-1\)
\(\Rightarrow5⋮x-1\)
\(\Rightarrow x-1\in\left\{1;-1;5;-5\right\}\)
+) \(x-1=1\Rightarrow x=2\)
+) \(x-1=-1\Rightarrow x=0\)
+) \(x-1=5\Rightarrow x=6\)
+) \(x-1=-5\Rightarrow x=-4\)
Vậy \(x\in\left\{2;0;6;-4\right\}\)
\(\frac{2x+1}{x-3}=\frac{2x-6+7}{x-3}=\frac{2x-6}{x-3}+\frac{7}{x-3}\)\(=\frac{2\left(x-3\right)}{x-3}+\frac{7}{x-3}=2+\frac{7}{x-3}\)
\(\Rightarrow\)\(x-3\inƯ\left(7\right)=\left\{1;7\right\}\)
\(\Rightarrow x-3=1\Rightarrow x=4\)
\(x-3=7\Rightarrow x=10\)
Vậy \(x\in\left\{4;10;2\right\}\)
NHỚ TK NHA