Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a).
\(2.16=2.2^4=2^5\\ 4=2^2\)
theo đề bài, ta có: \(2^5\ge2^n>2^2\Rightarrow5\ge n>2\)
vì n là số tự nhiên nên : \(n=5;4;3\)
b).
\(9.27=3^2.3^3=3^5\\ 243=3^5\)
theo đề bài, ta có: \(3^5\le3^n\le3^5\Rightarrow5\le n\le5\)
=> n=5
Giải:
a)2.16\(\ge\)2n>4
2.24\(\ge\)2n>22
25\(\ge\)2n>22
\(\Rightarrow\)5\(\ge\)n>2
\(\Rightarrow\)n\(\in\){3;4;5}
b)9.27\(\le\)3n\(\le\)243
32.33\(\le\)3n\(\le\)35
35\(\le\)3n\(\le\)35
5\(\le\)n\(\le\)5
\(\Rightarrow\)n=5
a: \(\Leftrightarrow2^5>2^n>2^2\)
=>2<n<5
hay \(n\in\left\{3;4\right\}\)
b: \(\Leftrightarrow3^5< =3^n< =3^5\)
=>n=5
a,2^5<2^n<2^7
=>5<n<7
=>n=6
b,2.16> 2^n>4
=2^5>2^n>2^2
=>5>n>2=>n=3,4
c,3^5<3^n<3^5=>n=5
1, 32 < 2^n < 128
2^5 < 2^n < 2^7
=> 5 < n < 7
Vì n là nguyên dương => n = 6
2, 2.16 > (=) 2^n > 4
2.2^4 > (=) 2^n > 2^2
2^5 > (=) 2^n > 2^2
5 >(=) n > 2 => n = 5 ; 4 ; 3
3, 9.27 < 3^n <= 243
3^2 . 3^3 < 3^n <= 3^5
3^5 < 3^n <=5
5 < n <= 5 ( không có n)
a) 32 < 2^n < 128
hay 2^5 < 2^n < 2^7
=> 5 < n < 7
=> n = 6
b) 2.16 \(\ge\)2^n > 4
hay 2^5 \(\ge\)2^n > 2^2
=> 5 \(\ge\)n > 2
=> n \(\in\left\{5;4;3\right\}\)
c) 9.27 \(\le\)3^n \(\le\) 243
hay 3^5 \(\le\)3^n \(\le\) 3^5
=> 5 \(\le\) n \(\le\) 5
=> n = 5
a,32<2^n<128
n sẽ bằng 6 vì khi 2^6=64>32 và 2^6=64 <128 (thỏa mãn điều kiện)
Vậy :n=6
lm tương tự
Bài làm:
\(32< 2^n< 128\)
hay \(2^5< 2^n< 2^7\)
\(\Rightarrow n=6\)
b, \(2\cdot16\ge2^n>4\)
hay \(32\ge2^n>4\)
\(2^5\ge2^n>2^2\)
\(\Rightarrow n\varepsilon\left(3,4,5\right)\)
c, \(9\cdot27\le3^n\le243\)
hay \(63\le3^n\le243\)
\(63\le3^n\le3^5\)
=> \(n\varepsilon\left(3;4\right)\)
#chúc bạn học tốt
Sorry, mình nhầm, câu c n thuộc (4;5) sorry bạn mong bạn bỏ qua