Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{2n^2-n+2}{2n+1}=\frac{2n^2+n-2n-1+3}{2n+1}=\frac{n\left(2n+1\right)-\left(2n+1\right)+3}{2n+1}=\frac{\left(2n+1\right)\left(n-1\right)+3}{2n+1}\)
Vì (2n+1) chia hết cho 2n+1 => (2n+1)(n-1) chia hết cho 2n+1
Nên để 2n2 - n + 2 chia hết cho 2n + 1 thì 3 phải chia hết cho 2n+1
=> \(2n+1\inƯ\left(3\right)=\left\{-1;1;3;-3\right\}\)
Nếu 2n + 1 = 1 thì n = 0 (thỏa mãn x thuộc Z)
Nếu 2n + 1 = -1 thì n = -1 (thỏa mãn x thuộc Z)
Nếu 2n + 1 = 3 thì n = 1 (thỏa mãn x thuộc Z)
Nếu 2n + 1 = -3 thì n = -2 (thỏa mãn x thuộc Z)
Vậy để 2n2 - n + 2 chia hết cho 2n + 1 <=> n = {0;-1;-2;1}
ta có: 2n2 - n + 2 chia hết cho 2n + 1
=> 2n2 + n - 2n + 2 chia hết cho 2n + 1
n.(2n+1) - ( 2n + 1) + 3 chia hết cho 2n + 1
(2n+1).(n-1) + 3 chia hết cho 2n + 1
mà (2n+1).(n-1) chia hết cho 2n + 1
=> 3 chia hết cho 2n + 1
=>...
2n² - n + 2. │ 2n + 1
2n² + n....... ├------------
------------------ I n - 1
.......-2n + 2
.......-2n - 1
_____________
3
Để chia hết thì: 3 phai chia hết cho ( 2n + 1)
hay (2n + 1) la ước của 3
Ư(3) = {±1 ; ±3}
______________________________
+) 2n + 1 = 1 <=> n = 0
+) 2n + 1 = -1 <=> n = -1
+) 2n + 1 = 3 <=> n = 1
+) 2n + 1 = -3 <=> n = -2
Vậy n ∈{0;-2 ; ±1}
Ta có: 2n2 – n + 2 : (2n + 1)
2015-10-01_000139
Ta có: n ∈ Z và 2n2 – n + 2 chia hết cho 2n +1 thì 2n + 1 là ước của 3. Ước của 3 là ±1; ± 3
Khi 2n + 1 = 1 ⇔2n = 0 ⇔ n = 0
Khi 2n + 1 = -1 ⇔ 2n = -2 ⇔ n = -1
Khi 2n + 1 = 3 ⇔ 2n = 2 ⇔ n – 1
Khi 2n + 1 = -3 ⇔ 2n = -4 ⇔ n = -2
Vậy, n = 0 hoặc n = – 1 hoặc n = 1 hoặc n = -2.
=>2n^2+n-2n-1+3 chia hết cho 2n+1
=>\(2n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-1;1;-2\right\}\)
Mk chỉ viết bước làm thôi nhá bạn tự làm nhá
bạn đặt phép chia đa thức tìm thương rồi cho thương = 0 thay vào tìm đc giá trị của n thôi
Ta có:
\(2n^2+5n-1⋮2n-1\)
\(\Rightarrow n\left(2n-1\right)+3\left(2n-1\right)+2⋮2n-1\)
\(\Rightarrow2⋮2n-1\)
Do \(n\in Z\Rightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\Rightarrow2n\in\left\{0;2;-1;3\right\}\)
Mà \(n\in Z\Rightarrow n\in\left\{0;1\right\}\)
Ta có:
\(\dfrac{2n^2-n+2}{2n+1}=\dfrac{2n^2+n-2n-1+3}{2n+1}=\\ \dfrac{n\left(2n+1\right)-\left(2n+1\right)+3}{2n+1}=\dfrac{\left(2n+1\right)\left(n-1\right)+3}{2n+1}\\ =n-1+\dfrac{3}{2n+1}\)
Để 2n2−n+2 chia hết cho 2n + 1 (với n ∈ Z) thì 2n + 1 phải là ước của 3. Do đó:
2n + 1 = 1=> 2n = 0 => n=0.
2n + 1 = −1 => 2n = −2 => n = −1.
2n+1 = 3 =>2n = 2 => n = 1.
2n + 1 = −3 => 2n = −4 => n = − 2.
Vậy n = 0; -1; -2; 1.