Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì A là số tự nhiên \(\Rightarrow\) \(A=\frac{n^2+3n}{8}\in N\Rightarrow n^2+3n⋮8\)
\(\Rightarrow n.\left(n+3\right)⋮8\)
Mặt khác (n+3) - n =3 là số lẻ \(\Rightarrow\) n+3 và n không cùng tính chẵn lẻ
\(\Rightarrow\orbr{\begin{cases}n⋮8\\n+3⋮8\end{cases}}\)
TH1 : \(n⋮8\Rightarrow n=8k\)( k \(\in\)N* ) \(\Rightarrow A=\frac{\left(8k\right)^2+8k.3}{8}=8k^2+3k=k.\left(8k+3\right)\)
Mà A là số nguyên tố \(\Rightarrow\)k.(8k+3) là số nguyên tố (1)
Lại có k \(\in\) N* \(\Rightarrow8k+3\in\)N*
8k+3 > k kết hợp (1)
\(\Rightarrow\hept{\begin{cases}k=1\\8k+3laSNT\end{cases}\Rightarrow8k+3=8.1.3=11}\)là SNT ( t/m)
\(\Rightarrow n=8.1=8\)
TH2: \(n+3⋮8\Rightarrow n+3=8k\)( k \(\in\) N* )
\(\Rightarrow n=8k-3\Rightarrow A=\frac{\left(8k-3\right)^2+3.\left(8k-3\right)}{8}\)
\(=\frac{\left(8k-3\right).\left(8k-3+3\right)}{8}=\frac{\left(8k-3\right).8k}{8}=k.\left(8k-3\right)\)
Mà A là SNT \(\Rightarrow k.\left(8k-3\right)\)là SNT (2)
Lại có : k\(\in\)N*\(\Rightarrow k\ge1\Rightarrow8k-3\ge5>0\)
k \(\in\)N* \(\Rightarrow8k-3\)\(\in\)Z ( ngoặc 2 dòng )
\(\Rightarrow8k-3\in\)N* kết hợp (2)
\(\Rightarrow\)+) k=1 và 8k-3 là SNT \(\Rightarrow\)k=1 và 8k-3=8.1-3=5 là SNT \(\Rightarrow n=5\)
+) 8k-3 =1 và k là SNT \(\Rightarrow\)k \(\notin\)N* mà k là SNT ( loại )
Vậy \(n\in\left\{5;8\right\}\)
( lưu ý nhé có chỗ ko viết được TV nên tui ghi ko có dấu )
\(\frac{n-5}{n+1}=\frac{n+1-6}{n+1}=1-\frac{6}{n+1}\)
\(\Rightarrow n+1\inƯ\left(6\right)=\left\{-1;1;-6;6\right\}\)
\(\Rightarrow n+1=-1\Rightarrow n=-2\)
\(\Rightarrow n+1=1\Rightarrow n=0\)
\(\Rightarrow n+1=-6\Rightarrow n=-7\)
\(\Rightarrow n+1=6\Rightarrow n=5\)
A, \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
Để A nguyên thì \(\frac{21}{n-4}nguy\text{ê}n\Leftrightarrow n-4\in\text{Ư}\left(21\right)=\left\{-21;-7;-3;-1;1;3;7;21\right\}\)
n-4 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
n | -17 | -3 | 1 | 3 | 5 | 9 | 11 | 25 |
TM | TM | TM | TM | TM | TM | TM | TM |
B, \(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)
Để A ngyên <=> \(\frac{8}{2n-1}nguy\text{ê}n\Leftrightarrow2n-1\in\text{Ư}\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
-8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 | 2n-1 |
-3,5 | -1,5 | -0,5 | 0 | 1 | 1,5 | 2,5 | 4,5 | n |
loại | loại | loại | TM | TM | loại | loại | loại |
pạn có sách nâng cao và phát triển toán 7 ko trong đó có bài này. bài 7
\(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
để A là số nguyên thì:
3+\(\frac{21}{n-4}\in Z\Rightarrow n-4\inƯ\left(21\right)=\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
n-4 | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
n | 5 | 3 | 7 | 1 | 11 | -3 | 25 | -17 |
Lời giải:
Trước tiên ta sẽ chứng minh một bổ đề: Số chính phương lẻ chia $8$ dư $1$
--------------------
CM: Gọi số chính phương lẻ là $n^2$. Vì $n^2$ lẻ nên $n$ lẻ. Do đó $n$ có dạng $4k\pm 1$
$\Rightarrow n^2=(4k\pm 1)^2=16k^2\pm 8k+1$ chia $8$ dư $1$ (đpcm)
----------------------
Quay trở lại bài toán:
Đặt $a+1=m^2; 2a+1=n^2$ (trong đó $m,n$ là các số tự nhiên)
$\Rightarrow 2m^2=n^2+1$
$\Rightarrow n^2+1\vdots 2\Rightarrow n$ lẻ
$\Rightarrow n^2$ chia $8$ dư $1$
$\Rightarrow 2m^2=n^2+1$ chia $8$ dư $2$
$\Rightarrow m^2$ lẻ
$\Rightarrow a+1=m^2$ chia $8$ dư $1$
$\Rightarrow a\vdots 8(*)$
Mặt khác:
Một số chính phương lẻ khi chia $3$ có dư là $0$ hoặc $1$
Nếu $m^2$ chia hết cho $3$ thì $a+1\vdots 3\Rightarrow a$ chia $3$ dư $2$
$\Rightarrow n^2=2a+1$ chia $3$ dư $2$ (vô lý)
Do đó $m^2=a+1$ chia $3$ dư $1$
$\Rightarrow a\vdots 3(**)$
Từ $(*); (**)$ mà $(3,8)=1$ nên $a\vdots 24$
ta có : \(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}.\)
Để \(3+\frac{5}{n-1}\)là gt nguyên \(\Rightarrow\frac{5}{n-1}\)là gt nguyên
\(\Rightarrow5⋮n-1\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{-4;0;2;6\right\}\)
Để A là số nguyên thì \(3n+2⋮n-1\)
Ta có: \(3n+2=3\left(n-1\right)+5\)
Vì \(3\left(n-1\right)⋮n-1\)
\(\Rightarrow\)Để \(3n+2⋮n-1\)thì \(5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{-4;0;2;6\right\}\)
Vậy \(n\in\left\{-4;0;2;6\right\}\)
+) neu n=0 => 2\(^n\) +15 = 1+15= 16 ( la scp)
+) Neu n = 1 => 2\(^n\) +15 = 2+15=17 ( la scp)
+)Neu n\(\ge\) 2 => 2\(^n\) \(⋮\) 4
Ma 15 chia 4 du 3 => 2\(^n\) /4 du 3 => 2\(^n\) ko la SCP
Vay n = 0