Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2014^2}\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
.................
\(\frac{1}{2014^2}< \frac{1}{2013.2014}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2013.2014}\)
\(\Rightarrow B< 1-\frac{1}{2014}< 1\)
\(\Rightarrow B< 1\)
\(\Rightarrow1+B< 1+1\)
Hay \(A< 2\)
C) Ta có: \(\frac{1}{2}< \frac{2}{3}\)
\(\frac{3}{4}< \frac{4}{5}\)
.................
\(\frac{9999}{10000}< \frac{10000}{10001}\)
\(\Rightarrow C< \frac{2}{3}.\frac{4}{5}.....\frac{10000}{10001}\)
\(\Rightarrow C^2< \left(\frac{1}{2}.\frac{3}{4}.....\frac{9999}{10000}\right).\left(\frac{2}{3}.\frac{4}{5}.....\frac{10000}{10001}\right)\)
\(\Rightarrow C^2< \frac{1}{10001}< \frac{1}{10000}\)
\(\Rightarrow C^2< \frac{1}{10000}\)
\(\Rightarrow C< \frac{1}{100}\)
A=\(1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
Đặt B=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+..+\)\(\frac{1}{99.100}=\)\(1-\frac{1}{100}< 1\)
Mà A=1+B=>A=1+B<1+1=2
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
vậy \(A=\frac{99}{100}< 2\left(đpcm\right)\)
B)
ta có : \(1=1\)
\(\frac{1}{2}+\frac{1}{3}< \frac{1}{2}+\frac{1}{2}=1\)
\(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{7}< \frac{1}{4}+...+\frac{1}{4}=\frac{4}{4}=1\)
\(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}< \frac{1}{8}+...+\frac{1}{8}=\frac{8}{8}=1\)
\(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{63}< 1\)
tất cả công lại \(\Rightarrow B< 6\)
Ta có\(\frac{-2}{3}\)+\(\frac{1}{4}\)= \(\frac{-8}{12}\)+\(\frac{3}{12}\)= \(\frac{-5}{12}\)
\(\frac{3}{4}\)-\(\frac{1}{3}\)=\(\frac{9}{12}\)-\(\frac{4}{12}\)=\(\frac{5}{12}\)
=> \(\frac{-5}{12}\)<\(\frac{a}{6}\)<\(\frac{5}{12}\)
=> \(\frac{-5}{12}\)<\(\frac{2a}{12}\)<\(\frac{5}{12}\)
Mà a là số nguyên,2a là số chẵn
=>2a{-4,-2,0,2,4}
=>a{-2,-1,0,1,2}