Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐt cô-si, ta có \(\frac{2\left(a+b\right)^2}{2a+3b}\ge\frac{8ab}{2a+3b}=\frac{8}{\frac{2}{b}+\frac{3}{a}}\)
\(\frac{\left(b+2c\right)^2}{2b+c}\ge\frac{8bc}{2b+c}=\frac{8}{\frac{2}{c}+\frac{1}{b}}\)
\(\frac{\left(2c+a\right)^2}{c+2a}\ge\frac{8ac}{c+2a}\ge\frac{8}{\frac{1}{a}+\frac{2}{c}}\)
Cộng 3 cái vào, ta có
A\(\ge8\left(\frac{1}{\frac{2}{b}+\frac{3}{a}}+\frac{1}{\frac{1}{b}+\frac{2}{c}}+\frac{1}{\frac{1}{a}+\frac{2}{c}}\right)\ge8\left(\frac{9}{\frac{3}{b}+\frac{4}{c}+\frac{4}{a}}\right)=8.\frac{9}{3}=24\)
Vậy A min = 24
Neetkun ^^
a, \(\dfrac{b}{\left(a-4\right)^2}.\sqrt{\dfrac{\left(a-4\right)^4}{b^2}}=\dfrac{b}{\left(a-4\right)^2}.\dfrac{\left(a-4\right)^2}{b}=1\)
b, Đặt \(B=\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(\sqrt{x}=a,\sqrt{y}=b\)
Ta có: \(B=\dfrac{a^3-b^3}{a-b}=\dfrac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a-b}=a^2+ab+b^2\)
\(\Rightarrow B=x+\sqrt{xy}+y\)
Vậy...
c, \(\dfrac{a}{\left(b-2\right)^2}.\sqrt{\dfrac{\left(b-2\right)^4}{a^2}}=\dfrac{a}{\left(b-2\right)^2}.\dfrac{\left(b-2\right)^2}{a}=1\)
d, \(2x+\dfrac{\sqrt{1-6x+9x^2}}{3x-1}=2x+\dfrac{\sqrt{\left(3x-1\right)^2}}{3x-1}=2x+1\)
a:b(a−4)2.√(a−4)4b2(b>0;a≠4)b(a−4)2.(a−4)4b2(b>0;a≠4)
= \(\dfrac{b}{\left(a-4\right)}.\dfrac{\sqrt{\left[\left(a-4\right)^2\right]^2}}{\sqrt{b^2}}\)
=\(\dfrac{b}{\left(a-4\right)^2}.\dfrac{\left(a-4\right)^2}{b}\)
= 1 ( nhân tử với tử mẫu với mẫu rồi rút gọn)
b:x√x−y√y√x−√y(x≥0;y≥0;x≠0)xx−yyx−y(x≥0;y≥0;x≠0)
=\(\dfrac{\sqrt{x^3}-\sqrt{y^3}}{\sqrt{x}-\sqrt{y}}\)
=\(\dfrac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\sqrt{x}-\sqrt{y}}\)
=\(\dfrac{\left(\sqrt{x}-\sqrt{y}\right).\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}\)(áp dụng hằng đẳng thức )
= (x+\(\sqrt{xy}\)+y)
c:a(b−2)2.√(b−2)4a2(a>0;b≠2)a(b−2)2.(b−2)4a2(a>0;b≠2)
Tương tự câu a
d:x(y−3)2.√(y−3)2x2(x>0;y≠3)x(y−3)2.(y−3)2x2(x>0;y≠3)
tương tự câu a
e:2x +√1−6x+9x23x−1
= \(2x+\dfrac{\sqrt{\left(3x\right)^2-6x+1}}{3x-1}\)
= 2x+\(\dfrac{\sqrt{\left(3x-1\right)^2}}{3x-1}\)(hằng đẳng thức)
=2x+\(\dfrac{3x-1}{3x-1}\)
=2x+1
Xí câu BĐT:
ta cần chứng minh \(\dfrac{a^2}{b^2c}+\dfrac{b^2}{c^2a}+\dfrac{c^2}{a^2b}\ge\dfrac{ab+bc+ca}{abc}\)
\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)
Áp dụng BĐT cauchy:
\(\dfrac{a^3}{b}+ab\ge2\sqrt{\dfrac{a^3}{b}.ab}=2a^2\)
tương tự ta có:\(\dfrac{b^3}{c}+bc\ge2b^2;\dfrac{c^3}{a}+ac\ge2c^2\)
cả 2 vế các BĐT đều dương,cộng vế với vế ta có:
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2a^2+2b^2+2c^2\)
\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\)
mà a2+b2+c2\(\ge ab+bc+ca\) ( chứng minh đầy đủ nhá)
do đó \(S=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge2\left(ab+bc+ca\right)-ab+bc+ca=ab+bc+ca\)
suy ra BĐT ban đầu đúng
dấu = xảy ra khi và chỉ khi a=b=c.
P/s: cách khác :Áp dụng BĐT cauchy-schwarz:
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)
\(S\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
Câu hệ này =))
b, Từ hệ đã cho ta thấy x,y > 0
Trừ vế cho vế pt (1) và (2) của hệ ta được:
\(x^4-y^4=4y-4x\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)=4\left(y-x\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)+4\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[\left(x+y\right)\left(x^2+y^2\right)+4\right]=0\)
\(\Leftrightarrow x-y=0\) ( Vì \(\left(x+y\right)\left(x^2+y^2\right)+4>0\) với x,y > 0)
\(\Leftrightarrow x=y\)
Với x = y thay vào pt đầu của hệ ta được:
\(x^4-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2+2x+3\right)=0\)
\(\Leftrightarrow x-1=0\) ( Vì \(x^2+2x+3>0\) )
\(\Leftrightarrow x=1\)
Với x=1 suy ra y=1
Vậy hệ đã cho có nghiệm duy nhất (x;y) = (1;1)
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(2a+b+c=(a+b)+(a+c)\geq 2\sqrt{(a+b)(a+c)}\)
\(\Rightarrow (2a+b+c)^2\geq 4(a+b)(a+c)\)
\(\Rightarrow \frac{1}{(2a+b+c)^2}\leq \frac{1}{4(a+b)(a+c)}\)
Hoàn toàn tương tự với các phân thức còn lại suy ra:
\(P\leq \frac{1}{4}\left(\frac{1}{(a+b)(a+c)}+\frac{1}{(b+c)(b+a)}+\frac{1}{(c+a)(c+b)}\right)\)
\(\Leftrightarrow P\leq \frac{1}{4}.\frac{(b+c)+(c+a)+(a+b)}{(a+b)(b+c)(c+a)}\)
\(\Leftrightarrow P\leq \frac{a+b+c}{2(a+b)(b+c)(c+a)}\)
Lại có: \((a+b)(b+c)(c+a)\geq 2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8abc\) (theo AM-GM)
\(\Rightarrow P\leq \frac{a+b+c}{2.8abc}=\frac{a+b+c}{16abc}(1)\)
Tiếp tục áp dụng BĐT AM-GM:
\(\frac{1}{a^2}+\frac{1}{b^2}\geq \frac{2}{ab}; \frac{1}{b^2}+\frac{1}{c^2}\geq \frac{2}{bc}; \frac{1}{c^2}+\frac{1}{a^2}\geq \frac{2}{ac}\)
\(\Rightarrow 2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\geq 2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Leftrightarrow 3\geq \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}\)
\(\Rightarrow a+b+c\leq 3abc(2)\)
Từ \((1); (2)\Rightarrow P\leq \frac{3abc}{16abc}=\frac{3}{16}\)
Vậy \(P_{\max}=\frac{3}{16}\). Dấu bằng xảy ra khi \(a=b=c=1\)
Từ \(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)+2017\)
\(\Leftrightarrow7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\le6\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)+2017\)\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\le2017\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(T=\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
\(=\dfrac{1}{\sqrt{\left(2+1\right)\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{\left(2+1\right)\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{\left(2+1\right)\left(2c^2+a^2\right)}}\)
\(\le\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\le\dfrac{1}{9}\left(\dfrac{2^2}{2a}+\dfrac{1^2}{b}\right)+\dfrac{1}{9}\left(\dfrac{2^2}{2b}+\dfrac{1^2}{c}\right)+\dfrac{1}{9}\left(\dfrac{2^2}{2c}+\dfrac{1^2}{a}\right)\)
\(\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)\)\(=\dfrac{1}{3a}+\dfrac{1}{3b}+\dfrac{1}{3c}\le\sqrt{\left(\dfrac{1}{81}+\dfrac{1}{81}+\dfrac{1}{81}\right)\left(\dfrac{9}{a^2}+\dfrac{9}{b^2}+\dfrac{9}{c^2}\right)}\)
\(\le\sqrt{\dfrac{1}{81}\cdot3\cdot9\cdot2017}=\sqrt{\dfrac{2017}{3}}\)
Vậy \(T_{Max}=\sqrt{\dfrac{2017}{3}}\) khi \(a=b=c=\sqrt{\dfrac{3}{2017}}\)
So kimochiii~
bai nay t lam roi vao trang chu cua nick thangbnsh cua t keo xuong tim la thay
Câu hỏi của Tuyển Trần Thị - Toán lớp 9 | Học trực tuyến
Lời giải:
Áp dụng BĐT AM-GM:
\(\frac{a^4}{(a+2)(b+2)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}\geq 4\sqrt[4]{\frac{a^4}{27.27.9}}=\frac{4a}{9}\)
\(\frac{b^4}{(b+2)(c+2)}+\frac{b+2}{27}+\frac{c+2}{27}+\frac{1}{9}\geq \frac{4b}{9}\)
\(\frac{c^4}{(c+2)(a+2)}+\frac{c+2}{27}+\frac{a+2}{27}+\frac{1}{9}\geq \frac{4c}{9}\)
Cộng theo vế và rút gọn:
\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}+\frac{2(a+b+c)}{27}+\frac{7}{9}\geq\frac{4(a+b+c)}{9}\)
\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}\geq \frac{10(a+b+c)}{27}-\frac{7}{9}=\frac{30}{27}-\frac{7}{9}=\frac{1}{3}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$