Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3-\sqrt{x}=\)0
\(\sqrt{x}=0+3\)
\(\sqrt{x}=3\)
mà :\(\sqrt{9}=3\)
=> x = 9
1. a) x^2=16=>x=+_4
b)x^2=36=>x=+_6
c)x^2=49=>x=+_7
d) x-1=+_5
+) x-1=5
=>x=6
+)x-1=-5
=>x=-4
e) (x+3)^2=-1( vô lý)
ko cs gtri của x
f) (2x+7)^2=36=>2x+7=+_6
+) 2x+7=6
x=-1/2
+) 2x+7=-6
=>x=-13/2
\(a,2\sqrt{x}+3=0\)
\(\Leftrightarrow2\sqrt{x}=-3\)
\(\Leftrightarrow\sqrt{x}=-\frac{3}{2}\)( loại )
\(b,\frac{5}{12}\sqrt{x}-\frac{1}{6}=\frac{1}{3}\Leftrightarrow\frac{5}{12}\sqrt{x}=\frac{1}{2}\Leftrightarrow\sqrt{x}=\frac{6}{5}\Leftrightarrow x=\frac{36}{25}\)
\(c,\sqrt{x+3}+3=0\Leftrightarrow\sqrt{x+3}=-3\)( loại )
a) \(2\sqrt{x}+3=0\)
\(2\sqrt{x}=-3\)
\(\sqrt{x}=\frac{-3}{2}\)
\(x=\frac{9}{4}\)
vậy \(x=\frac{9}{4}\)
b) \(\frac{5}{12}\sqrt{x}-\frac{1}{6}=\frac{1}{3}\)
\(\frac{5}{12}\sqrt{x}=\frac{1}{3}+\frac{1}{6}\)
\(\frac{5}{12}\sqrt{x}=\frac{1}{2}\)
\(\sqrt{x}=\frac{1}{2}:\frac{5}{12}\)
\(\sqrt{x}=\frac{6}{5}\)
\(x=\frac{36}{25}\)
vậy \(x=\frac{36}{25}\)
c) \(\sqrt{x+3}+3=0\)
\(\sqrt{x+3}=-3\)
\(\Rightarrow x\in\varnothing\) vì ko thỏa mãn ĐKXĐ của căn thức \(x\ge0\)
hay nói khác đi căn thức \(\sqrt{x+3}\) ko có nghĩa
vậy \(x\in\varnothing\)
a) \(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\frac{1}{3}:2x=\frac{-21}{4}\)
\(2x=\frac{-4}{63}\)
\(x=\frac{2}{63}\)
b) \(\left(3x-\frac{1}{4}\right)\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-1}{2}\end{cases}}\)
Vậy.........
Bài 2:
a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)
Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)
\(\Rightarrow6x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)
\(\Rightarrow4x+12=6x\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\)
Vậy x = 6
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)
\(=\frac{14-5}{8}=\frac{9}{8}\)
+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)
+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)
+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)
Vậy ...
c) \(5^x+5^{x+1}+5^{x+2}=3875\)
\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)
\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)
\(\Rightarrow5^x.31=3875\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
Vậy x = 3
\(a,\sqrt{x}=7\left(ĐKXĐ:x\ge0\right)\)
\(\Leftrightarrow\) \(\sqrt{x}=\sqrt{49}\)
\(\Leftrightarrow\) \(x=49\)
Kết hợp với ĐK x >= 0 \(\Rightarrow\) x=49 (t/m )
vậy x=49
\(\)
\(b,\sqrt{x+1}=11\left(ĐKXĐ:x\ge-1\right)\)
\(\Leftrightarrow\sqrt{x+1}\) = \(\sqrt{121}\)
\(\Leftrightarrow\) \(x+1=121\)
\(\Leftrightarrow\) \(x=120\) kết hợp với ĐK x >= -1 \(\Rightarrow\) x=120 ( t/m )
Vậy x=120