K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x+y=-2

Áp dụng t/c dãy tỉ số = nhau ta có

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y}{3+4}=\frac{-2}{7}\)

Suy ra x=\(\frac{-6}{7}\)

y=\(\frac{-8}{7}\)

z= thay vào dãy tỉ số tính hok tốt

16 tháng 4 2019

Do ab¯,ad¯ là các số nguyên tố nên b và d là các số lẻ khác 5 (1)

từ (gt) db¯+c=b^2+ d (2)

=> 10d+b+c=b^2 + d
=> 9d+c=b^2−b=b(b−1)
VT lớn hơn hoặc bằng 9 nên từ VP => b>3 mà b lẻ khác 5 nên b chỉ có thể bằng 7 hoặc 9

+Với b = 7 thì 9d+c=42 => 3<d<5 trái với (1)

+Với b= 9 thì 9d +c= 72 => 7<hoac = d<hoac=8, mà d lẻ nên d = 7

Thay vào (2) ta đc c = 9

Do a9¯, a7¯ cùng nguyên tố nên a chỉ có thể nhận các giá trị tương ứng 1,2,5,7,8 hoặc 1,3,4,6,9 

=> a = 1 và abcd¯ = 1997, thử lại thấy thỏa mãn

22 tháng 8 2016

sai đề

22 tháng 8 2016

kia ko pải là = đâu mà pải là cộng chứ bn NTMH

20 tháng 8 2017

N/X: Vì a là số CP => a=1;4;9 

   TH1: Nếu a = 1 => d=6( vì ad =49=72 là số chính phương ) 

                          => c=3( vì cd = 36=62 là số chính phương ) 

                          => b=9(vì abcd = 1936= 442 là số chính phương) 

         => a = 1; b = 9; c = 3; d = 6 

 tự KL nhóe, mai cô Thảo KT rồi đấy, làm cẩn thận nhé, ở bài này T chỉ xét 1 TH thôi chứ đúng ra phải xét cả 2 TH a = 4 hoặc 9 nữa cơ, dù sao thì ngủ sớm đi nhé, bye 

3 tháng 9 2016

Ta có : \(\frac{a}{abc+ab+a+1}+\frac{b}{bcd+bc+b+1}+\frac{c}{acd+cd+c+1}+\frac{d}{abd+ad+d+1}\)

\(=\frac{ad}{1+abd+ad+d}+\frac{abd}{abcd^2+abcd+abd+ad}+\frac{abcd}{a^2bcd^2+abcd^2+abcd+abd}+\frac{d}{abd+ad+d+1}\)

\(=\frac{ad}{abd+ad+d+1}+\frac{abd}{abd+ad+d+1}+\frac{1}{abd+ad+d+1}+\frac{d}{abd+ad+d+1}\)

\(=\frac{abd+ad+d+1}{abd+ad+d+1}=1\)