Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^{x-y}\left(1+y^y\right)=5489855287\)=7^6.46663
sau đó xét thôi
TH1: x=7,x-y=6=> y=1 vô lí
đấy cứ thế cho đến khi x-y=0 thì thôi
Nguyên Đinh Huynhkhông biết thì thôi đừng có trả lời mất công bạn vovanninh phải đọc
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}+\frac{1}{xy}\Leftrightarrow\frac{x+y}{xy}=\frac{xy+3}{3xy}\Leftrightarrow\frac{3x+3y}{3xy}=\frac{xy+3}{3xy}\Leftrightarrow3x+3y=xy+3\Leftrightarrow\left(x-3\right)\left(y-3\right)=6\)
Vì x,y là số tự nhiên nên x - 3 và y - 3 thuộc ước của -6 mà ước của -6 là +-1; +-2; +-3; +-6
Ta có bảng:
x-3 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
y-3 | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |
x | -3 (loại) | 0 (loại) | 1 | 2 | 4 | 5 | 6 | 9 |
y | 2 | 1 | 0 (loại) | -3 (loại) | 9 | 6 | 5 | 4 |
Vậy có 4 cặp là ......
2)
a)Thay m = 2 vào hệ, ta được :
HPT :\(\hept{\begin{cases}2x+4y=2+1\\x+\left(2+1\right)y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+4y=3\left(^∗\right)\\x+3y=2\left(^∗^∗\right)\end{cases}}\)
Lấy (*) trừ (**), ta được :
\(2x+4y-x-3y=3-2\)
\(\Leftrightarrow x+y=1\)(***)
Lấy (**) trừ (***), ta được :
\(\Leftrightarrow x+3y-x-y=2-1\)
\(\Leftrightarrow2y=1\)
\(\Leftrightarrow y=\frac{1}{2}\)
\(\Leftrightarrow x=1-\frac{1}{2}=\frac{1}{2}\)
Vậy với \(m=2\Leftrightarrow\left(x;y\right)\in\left\{\frac{1}{2};\frac{1}{2}\right\}\)
b) Thay \(\left(x;y\right)=\left(2;-1\right)\)vào hệ, ta được :
HPT :\(\hept{\begin{cases}2m-2m=m+1\\2-\left(m+1\right)=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m+1=0\\m+1=0\end{cases}}\)
\(\Leftrightarrow m=-1\)
Vậy với \(\left(x,y\right)=\left(2;-1\right)\Leftrightarrow m=-1\)
\(Q=\left(1+\frac{\alpha}{x}\right)\left(1+\frac{\alpha}{y}\right)\left(1+\frac{\alpha}{z}\right)=\left(\frac{\alpha+x}{x}\right)\left(\frac{\alpha+y}{y}\right)\left(\frac{\alpha+z}{z}\right)\)
Mà \(\alpha=x+y+z\) (theo gt) nên ta có thể viết \(Q\) như sau:
\(Q=\left(\frac{2x+y+z}{x}\right)\left(\frac{x+2y+z}{y}\right)\left(\frac{x+y+2z}{z}\right)=\left(2+\frac{y+z}{x}\right)\left(2+\frac{x+z}{y}\right)\left(2+\frac{x+y}{z}\right)\)
Đặt \(a=\frac{y+z}{x};\) \(b=\frac{x+z}{y};\) và \(c=\frac{x+y}{z}\) \(\Rightarrow\) \(a,b,c>0\)
Khi đó, biểu thức \(Q\) được biểu diễn theo ba biến \(a,b,c\) như sau:
\(Q=\left(2+a\right)\left(2+b\right)\left(2+c\right)=4\left(a+b+c\right)+2\left(ab+bc+ca\right)+abc+8\)
\(\Rightarrow\) \(Q-8=4\left(a+b+c\right)+2\left(ab+bc+ca\right)+abc\)
Mặt khác, ta lại có:
\(a+b+c=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\)
nên \(a+b+c+3=\frac{y+z}{x}+1+\frac{x+z}{y}+1+\frac{x+y}{z}+1\)
\(\Rightarrow\) \(a+b+c+3=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Lại có: \(\hept{\begin{cases}x+y+z\ge3\sqrt[3]{xyz}\text{ (1)}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\text{ (2)}\end{cases}}\) (theo bđt \(Cauchy\) lần lượt cho hai bộ số gồm các số không âm)
Nhân hai bđt \(\left(1\right);\) và \(\left(2\right)\) vế theo vế, ta được bđt mới là:
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
Theo đó, \(a+b+c+3\ge9\) tức là \(a+b+c\ge6\)
\(\Rightarrow\) \(4\left(a+b+c\right)\ge24\) \(\left(\alpha\right)\)
Bên cạnh đó, ta cũng sẽ chứng minh \(abc\ge8\) \(\left(\beta\right)\)
Thật vậy, ta đưa vế trái bđt cần chứng minh thành một biểu thức mới.
\(VT\left(\beta\right)=abc=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}}{xyz}=\frac{8xyz}{xyz}=8=VP\left(\beta\right)\)
Vậy, bđt \(\left(\beta\right)\) được chứng minh.
Từ đó, ta có thể rút ra được một bđt mới.
\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\ge3\sqrt[3]{8^2}=12\) (theo cách dẫn trên)
\(\Rightarrow\) \(2\left(ab+bc+ca\right)\ge24\) \(\left(\gamma\right)\)
Cộng từng vế 3 bđt \(\left(\alpha\right);\) \(\left(\beta\right)\) và \(\left(\gamma\right)\), ta được:
\(Q-8\ge24+8+24=56\)
Do đó, \(Q\ge64\)
Dấu \("="\) xảy ra khi và chỉ khi \(a=b=c\) \(\Leftrightarrow\) \(x=y=z=2\)
Vậy, \(Q_{min}=64\) khi \(\alpha=6\)
dễ thấy với điệu kiện đề bài thì xy(\(\sqrt{x}+\sqrt{y}-2.\))\(\ge0\)
Vì x;y có vai trò ngang nhau nên giả sử x\(\ge y\)
đặt \(x^2=a,y^2=b;\sqrt{x}-1=m;\sqrt{y-1}=n\)=> am+bn= \(x^2\left(\sqrt{x}-1\right)+y^2\left(\sqrt{y}-1\right)\)
thì ta có \(a\ge b;m\ge n\)
=> (a-b)(m-n) \(\ge0< =>am+bn\ge an+bm< =>2am+2bn\ge\left(a+b\right)\left(m+m\right)\)
<=>\(am+bn\ge\frac{\left(a+b\right)\left(m+n\right)}{2}=\frac{\left(x^2+y^2\right)\left(\sqrt{x}-1+\sqrt{y}-1\right)}{2}\ge0\)
hay am+bn\(\ge0\)
vậy vế trái luôn lớn hơn bằng 0
dấu"=" khi \(\sqrt{x}+\sqrt{y}-2=0\)