K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2016

không có số tự nhiên nào thỏa mãn đề bài

19 tháng 5 2016

\(\frac{1}{x+y}=\frac{x+y}{xy}\)

\(\Leftrightarrow\left(x+y\right)^2=xy\)

\(x^2+2xy+y^2=xy\)

\(x^2+xy+y^2=0\)

Phương trình này không có nghiệm vì \(\Delta=b^2-4ac=1^2-4=-3\Rightarrow\Delta< 0\)

15 tháng 11 2016

x và y = 2

15 tháng 11 2016

x và y =2

13 tháng 1 2020

a

Nếu  \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)

Nếu \(y>0\Rightarrow3^y⋮3\)

Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý

Vậy.....

b

Không mất tính tổng quát giả sử \(x\ge y\)

Ta có:

\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)

\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)

Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )

Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)

Vậy x=4;y=2 và các hoán vị

13 tháng 1 2020

câu a làm cách khác đi bạn

12 tháng 1 2020

xyz - xy + yz + zx = 0 

=> xyz - xy + z(x + y) = 0

=> z(xy + x + y) - xy = 0

=> z[x(y + 1) + y + 1 - 1] - xy = 0

=> z(x + 1)(y + 1) - (xy + z) = 0 

28 tháng 12 2018

\(2^{x+1}.3^y=12^x\Leftrightarrow2^x.2.3^y=12^x\Leftrightarrow2.3^y=6^x\Leftrightarrow2.3^y=2^x.3^x\)

Xét y=0 \(\Rightarrow2.3^0=6^x\Leftrightarrow2=6^x\) (pt vô nghiệm)

Xét y=1 \(\Rightarrow6=6^x\Leftrightarrow x=1\)

Xét \(y\ge2\Rightarrow x>1\) 

\(\Leftrightarrow3^y=2^{x-1}.3^x\) (VT không chia hết cho 2, VP chia hết cho 2 suy ra vô lí)

10 tháng 3 2019

Theo bài ra: 5x+y4=18

5/x=1/82y/8

5x=12y/8

5:x=(12y):8

x(12y)=40 ( Quy tắc chuyển vế )

Có: 12y là số lẻ

⇒ 1 - 2y thuộc ước lẻ của 40.

12y{±1;±5}

Ta có bảng sau:

12y1155
y0123
x404085

Vậy x{40;40;8;8};y{0;1;2;3}