Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm bài & thôi :
(x2 - 2x + 3) \(⋮\)(x - 1)
= x2 - 2x + 3
=) x2 - 2x + 3 - ( x - 1 )
=) x2 - 1
=) x2 - 1 - x( x - 1 )
=) 2 \(⋮\)x - 1
tự làm
a) Ta có: (x2 - 2x + 3) \(⋮\)(x - 1)
<=> [x(x - 1) - (x - 1) + 2] \(⋮\)(x - 1)
<=> [(x - 1)2 + 2] \(⋮\)(x - 1)
Do (x - 1)2 \(⋮\)(x - 1) => 2 \(⋮\)(x - 1)
=> (x - 1) \(\in\)Ư(2) = {1; -1; 2; -2}
Lập bảng :
x - 1 | 1 | -1 | 2 | -2 |
x | 2 | 0 | 3 | -1 |
Vậy ...
b) (3x - 1) \(⋮\)(x - 4)
<=> [3(x - 4) + 11] \(⋮\)(x - 4)
Do 3(x - 4) \(⋮\)(x - 4) => 11 \(⋮\)(x - 4)
=> (x - 4) \(\in\)Ư(11) = {1; -1; 11; -11}
Lập bảng:
x - 4 | 1 | -1 | 11 | -11 |
x | 5 | 3 | 15 | -7 |
vậy ...
c;d tương tự trên
Bài 1:
a: =>13x+8=9x+20
=>4x=12
hay x=3
b: \(\Leftrightarrow5x-7=-8-11-3x\)
=>5x-7=-3x-19
=>8x=-12
hay x=-3/2
c: \(\Leftrightarrow\left[{}\begin{matrix}12x-7=5\\12x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{6}\end{matrix}\right.\)
e: =>3x+1=-5
=>3x=-6
hay x=-2
Ta có " (x - 5)7 = (x - 5)4
=> (x - 5)7 - (x - 5)4 = 0
<=> (x - 5)4[(x - 5)3 - 1] = 0
\(\Leftrightarrow\orbr{\begin{cases}\left(x-5\right)^4=0\\\left(x-5\right)^3-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\\left(x-5\right)^3=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-5=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=6\end{cases}}\)
=> (1+2X-1)x (2x-1+1)/4=225
=> 2x+2x/4=225
=> 4x^2/4=225
=> x^2= 225
=> x=15
cái ^ là mũ nha bạn
chúc bn hok tốt
`Answer:`
a. Tổng: \([\left(2x-1\right)-1]:2+1=x\) số hạng
Ta có: \(1+3+5+7+9+...+\left(2x-1\right)=225\)
\(\Rightarrow x.\left(2x-1+1\right):2=225\)
\(\Leftrightarrow2x^2:2=225\)
\(\Leftrightarrow x^2=225\)
\(\Leftrightarrow x=15\)
b. Mình sửa đề nhé: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}+...+2^{x+2015}=2^{2019}-8\)
\(\Rightarrow2^x.\left(1+2+2^2+...+2^{2015}\right)=2^{2019}-8\)
Ta đặt \(K=1+2+2^2+...+2^{2015}\)
\(\Rightarrow2^x.K=2^{2019}-8\)
\(\Rightarrow2K=2.\left(1+2+2^2+...+2^{2015}\right)\)
\(\Rightarrow2K=2+2^2+2^3+...+2^{2015}+2^{2016}\)
\(\Rightarrow2K-K=\left(2+2^2+2^3+...+2^{2015}+2^{2016}\right)-\left(1+2+2^2+...+2^{2015}\right)\)
\(\Rightarrow K=2^{2016}-1\)
\(\Rightarrow2^x.\left(2^{2016}-1\right)=2^{2019}-8\)
\(\Rightarrow2^{x+2016}-2^x=2^{2019}-2^3\)
\(\Rightarrow\hept{\begin{cases}x+2016=2019\\x=3\end{cases}}\Rightarrow x=3\)
Bài 1 tự làm!
Bài 2:
a, \(\left(3x-4\right)\left(x-1\right)^3=0\Rightarrow\left[{}\begin{matrix}3x-4=0\\\left(x-1\right)^3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=1\end{matrix}\right.\)
b, \(2^{2x-1}:4=8^3\Rightarrow2^{2x-1}:2^2=2^9\)
\(\Rightarrow2x-1-2=9\Rightarrow2x-3=9\Rightarrow2x-12\Rightarrow x=6\)
c, Đề chưa rõ
d, \(\left(x+2\right)^5=2^{10}\Rightarrow\left(x+2\right)^5=4^5\Rightarrow x+2=4\Rightarrow x=2\)
e, \(\left(3x-2^4\right).7^3=2.7^4\Rightarrow3x-2^4=2.7^4:7^3\Rightarrow3x-16=2.7=14\)
\(\Rightarrow3x=14+16=30\Rightarrow x=\dfrac{30}{3}=10\)
f, \(\left(x+1\right)^2=\left(x+1\right)^0\Rightarrow\left(x+1\right)^2=1\) (vì x0 = 1)
\(\Rightarrow x+1=1\Rightarrow x=0\)
a) \(\left(x-2\right).\left(2x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\2x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\2x=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{2}\end{cases}}\)
b) \(\left(3x+9\right).\left(1-3x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+9=0\\1-3x=0\end{cases}}\Rightarrow\orbr{\begin{cases}3x=-9\\3x=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-3\\x=\frac{1}{3}\end{cases}}\)
c) (31 - 2x)3 =27
(31 - 2x)3 = 33
=> 31 - 2x = 3
2x = 31 - 3
2x = 28
x = 14
a. \(\left(x-2\right).\left(2x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x-2=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{2}\end{cases}}}\)
Vậy \(x=2\)hoặc \(x=\frac{1}{2}\)
b.\(\left(3x+9\right).\left(1-3x\right)=0\Leftrightarrow\orbr{\begin{cases}3x+9=0\\1-3x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=\frac{1}{3}\end{cases}}}\)
Vậy \(x=-3\)hoặc \(x=\frac{1}{3}\)
c.\(\left(31-2x\right)^3=-27\)
\(\Leftrightarrow\left(31-2x\right)^3=\left(-3\right)^3\)
\(\Leftrightarrow31-2x=-3\)
\(2x=34\)
\(x=17\)
d.\(\left(x-2\right).\left(7-x\right)=0\Leftrightarrow\orbr{\begin{cases}x-2=0\\7-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=7\end{cases}}}\)
Vậy \(x=2\)hoặc \(x=7\)
e.\(\left(x-5\right)^5=32\)
\(\Leftrightarrow\left(x-5\right)^5=2^5\)
\(\Leftrightarrow x-5=2\Leftrightarrow x=7\)
f.\(\left(2-x\right)^4=81\)
\(\Leftrightarrow\left(2-x\right)^4=3^4\)
\(2-x=3\Leftrightarrow x=-1\)
g.\(\left|x-7\right|< 3\Leftrightarrow-3< x-7< 3\Leftrightarrow4< x< 10\)
1+3+5+...+x=1600
=(x+1).[(x-1):2+1] /2 =1600
=(x+1).(x+1) /2 =1600
=(x+1)^2:2=40^2
=(x+1):2=40
=x+1=80
=x=79
\(2x+4⋮x-1\Rightarrow2\left(x-1\right)+6⋮x-1\)
\(\Rightarrow6⋮x-1\Rightarrow x-1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Rightarrow x\in\left\{2;0;3;-1;4;-2;7;-5\right\}\)
Vậy...........................................
\(2x^2+\left(-3\right)^2=41\)
\(\Rightarrow2x^2=41-9=32\)
\(\Rightarrow x^2=16\)
\(\Rightarrow x=\pm4\)
\(2\left(x-5\right)-3\left(x+7\right)=14\)
\(\Rightarrow2x-10-3x-21=14\)
\(\Rightarrow2x-3x=14+21+10\)
\(\Rightarrow-x=45\Rightarrow x=-45\)
\(-7\left(5-x\right)-2\left(x-10\right)=15\)
\(\Rightarrow-35+x-2x+20=15\)
\(\Rightarrow x-2x=15-20+35\)
\(\Rightarrow-x=30\Rightarrow x=-30\)
Đề 1: Cho x+1x=3x+1x=3 . Tính A=x3+1x3A=x3+1x3
x+1x=3⇔1+1x=3⇔1x=2x+1x=3⇔1+1x=3⇔1x=2
ta có: A=1+1x3=1+23=9A=1+1x3=1+23=9
Đề 2: Cho x+1x=3x+1x=3 (*). Tính A=x3+1x3A=x3+1x3
A=(x+1x)(x2−1+1x2)=(x+1x)[(x+1x)2−2−1]A=(x+1x)(x2−1+1x2)=(x+1x)[(x+1x)2−2−1]
Thay (*) vào A, ta được:
A=3⋅6=18