Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gỉa sử trong 20 điểm, ko có 3 điểm nào thẳng hàng. Khi đó,số đường thẳng vẽ được là: (19.20):2=190
Trong a điểm,giả sử ko có 3 điểm nào thẳng hàng,Số đường thẳng vẽ được là:(a-1).a:2 Thực tế trong a điểm này ta chỉ vẽ được 1 đường thẳng.Vậy ta có:
190-(a-1).a:2+1=70
=>a=7
chuyen cac hon so thanh phan so roi thuc hien phep tinh : 2 2/3 +1 4/7
Bài giải
Theo đề bài, ta có nếu chuyển từ mẫu số lên tử số để phân số \(\frac{51}{101}\) bằng với phân số \(\frac{3}{5}\) thì tổng giữa tử số và mẫu số của phân số \(\frac{51}{101}\) vẫn không thay đổi. Vậy tổng giữa tử số và mẫu số của phân số \(\frac{51}{101}\) là:
51 + 101 = 152
Mẫu số của phân số \(\frac{51}{101}\) sau khi thay đổi là:
152 : (3 + 5) x 5 = 95
Và cần phải chuyển từ mẫu số lên tử số:
101 - 95 = 6 (đơn vị)
\(\Rightarrow\) Cần phải chuyển từ mẫu số lên tử số 6 đơn vị.
\(\frac{152152152}{172172172}=\frac{38\cdot4004004}{43\cdot4004004}=\frac{38}{43}\)
\(\frac{2009}{1}+\frac{2010}{2}+...+\frac{5016}{2008-2008}\)
\(=\frac{2009}{1}+\frac{2010}{2}+...+\frac{5016}{0}\)
Sau đó QĐM(bạn tự QĐ nha)
\(=\frac{0}{0}+\frac{0}{0}+...+\frac{5016}{0}\)
\(=\frac{5016}{0}=0\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right).x=0\)
Mà \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)\ne0\)
\(\Rightarrow x=0\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009}\)
\(=>\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009}\)
\(=>\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)
\(=>1-\frac{1}{x+1}=\frac{2008}{2009}=>\frac{1}{x+1}=1-\frac{2008}{2009}=\frac{1}{2009}\)
=>x+1=2009
=>x=2008
Vậy x=2008
1/2+1/6+1/12+...+1/x*(x+1)=2008/2009
1/1*2+1/2*3+1/3*4+...+1/x*(x+1)=2008/2009
1-1/2+1/2-1/3+1/3-1/4+...+1/x-1/(x+1)=2008/2009
1-1/x+1)=2008/2009
1/x+1=1-2008/2009
1/x+1=1/2009
nên x+1=2009
x=2009-1
x=2008 (tick nha)