Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x - 35) - 120 = 0
x - 35 = 120
x = 120 + 35
x = 155
b) 124 + ( 118 - x ) = 217
118 - x = 124 - 117
118 - x = 7
x = 118 - 7
x = 111
c) 156 - ( x + 61 ) = 82
x + 61 = 156 - 82
x + 61 = 74
x = 74 - 61
x = 13
Chúc bạn học tốt ^^
a) ( x - 35 ) - 120 = 0
=> x - 35 = 0 + 120
=> x - 35 = 120
=> x = 120 + 35
=> x = 155
b) 124 + ( 118 - x ) = 217
=> 118 - x = 124 - 217
=> 118 - x = -93
=> -x = -93 - 118
=> -x = -211
=> x = 211
c) 156 - ( x + 61) = 82
x + 61 = 156 - 82
x + 61 = 74
=> x = 74 - 61
=> x = 13
a, x chia hết cho 5 => x=5
1245 chia hết cho 3 => 1+2+4+5 chia hết cho 3
b, 54;72;90 chia hết cho x => x thuộc ƯC (54;72;90)
=> x thuộc .............................................
Mà x bé hơn 10
=> x=........
a:
\(70=2\cdot5\cdot7;84=2^2\cdot3\cdot7\)
=>\(ƯCLN\left(70;84\right)=2\cdot7=14\)
=>\(ƯC\left(70;84\right)=Ư\left(14\right)=\left\{1;2;7;14\right\}\)
\(70⋮x;84⋮x\)
=>\(x\inƯC\left(70;84\right)\)
=>\(x\inƯ\left(14\right)\)
=>\(x\in\left\{1;2;7;14\right\}\)
mà x>8
nên x=14
b: \(35=5\cdot7;45=3^2\cdot5\)
=>\(BCNN\left(35;45\right)=3^2\cdot5\cdot7=9\cdot35=315\)
\(a⋮35;a⋮45\)
=>\(a\in BC\left(35;45\right)\)
=>\(a\in B\left(315\right)\)
=>\(a\in\left\{315;630;945;...\right\}\)
mà 500<a<900
nên a=630
A) Để tìm số tự nhiên x, ta cần tìm ước chung lớn nhất của 70 và 84. Ta có:
70 : x = 84 : x
Đặt ước chung lớn nhất của 70 và 84 là d. Ta có:
70 = d * m1
84 = d * m2
Trong đó m1 và m2 là các số tự nhiên. Ta thấy d là ước chung lớn nhất của 70 và 84 khi và chỉ khi d là ước chung lớn nhất của m1 và m2.
Ta phân tích 70 và 84 thành các thừa số nguyên tố:
70 = 2 * 5 * 7
84 = 2^2 * 3 * 7
Ta thấy ước chung lớn nhất của 70 và 84 là 2 * 7 = 14.
Vì x > 8, nên x = 14.
B) Để tìm số tự nhiên a, ta cần tìm ước chung lớn nhất của a và 35, cũng như ước chung lớn nhất của a và 45. Ta có:
a : 35 = a : 45
Đặt ước chung lớn nhất của a và 35 là d1, và ước chung lớn nhất của a và 45 là d2. Ta có:
a = d1 * m1
a = d2 * m2
Trong đó m1 và m2 là các số tự nhiên. Ta thấy a là số tự nhiên khi và chỉ khi a là ước chung lớn nhất của m1 và m2.
Ta phân tích 35 và 45 thành các thừa số nguyên tố:
35 = 5 * 7
45 = 3^2 * 5
Ta thấy ước chung lớn nhất của 35 và 45 là 5.
Vì 500 < a < 900, nên a = 5.
a) Ta có: x 2 = 2 2 nên x = 2.
b) Ta có: x 2 = 5 2 nên x = 5.
c) Ta có: 3 x 5 = 3 nên x 5 = 1 . Do đó x = 1.
d) Ta có: 6 x 3 = 48 nên x 3 = 8 . Do đó x = 2.
e) Ta có: x - 1 2 = 2 2 nên x - 1 = 2 . Do đó x = 3.
f) Ta có: x + 1 2 = 5 2 nên x +1 = 5. Do đó x = 4.
g) Ta có: x - 1 3 = 3 3 nên x - 1 = 3 . Do đó x = 4.
h) Ta có: x + 1 3 = 4 3 nên x +1 = 4. Do đó x = 3
Ta có x^35=x^45
<=>x^45-x^35=0
<=>x^35.(x^10-1)=0
<=> \(\orbr{\begin{cases}x^{35}=0\\x^{10}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x^{10}=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\\orbr{\begin{cases}x=1\\x=-1\end{cases}}\end{cases}}}\)