Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^x+5^{x+2}=650;5^x.26=650;5^x=25;x=2\)
\(2^x+2^{x+3}=144;2^x.9=144;2^x=16;x=4\)
\(3^{x-1}+5.3^{x-1}=162;3^{x-1}.6=162;3^{x-1}=27;x=4\)
\(\left(x-5\right)^4=\left(x-5\right)^6\)
\(\rightarrow x-5=0\&x-5=1\) hoặc x - 5 = - 1
\(x-5=1;x=6;x-5=0;x=5;x-5=-1;x=4\)
\(\left(2^2:4\right).2^n=4;2^n=2^2;n=2\)
B1. 2x + 3 + 22 = 72
=> 2x + 3 + 4 = 72
=> 2x + 3 = 72 - 4
=> 2x + 3 = 68
=> ko có gtri x
B2 : Ta có : A = 1 + 2 + 22 + 23 + 24 + 25 + 26 + ... + 22001 + 22002
= (1 + 2) + (22 + 23 + 24) + (25 + 26 + 27) + ... + (22000 + 22001 + 22002)
= 3 + 22.(1 + 2 + 22) + 25.(1 + 2 + 22 ) + ... + 22000 . (1 + 2 + 22)
= 3 + 22.7 + 25.7 + ... + 22000 . 7
= 3 + (22 + 25 + .... + 22000) . 7
=> Số dư của 7 là 3
A=1.1+2.2+3.3+.....+100.100
A=1.(2-1)+2.(3-1)+.......+100.(101-1)
A=1.2+2.3+......+100.101-1-2-3-4-.......-100
3A=1.2.(3-0)+2.3.(4-1)+......+100.101.(102-99)-(1+2+3+....+100).3
3A=1.2.3+2.3.4+....+100.101.102-1.2.3-2.3.4-.....-99.100.101-(1+2+3+......+100).3
3A=100.101.102-101.100.3
3A=101.100.(102-3)
3A=101.100.99
A=101.100.33
A=(mấy tự tính)
Câu 2:
Ta có: \(21^{15}=\left(3.7\right)^{15}=3^{15}.7^{15}\)
mà \(27^5.49^8=\left(3^3\right)^5.\left(7^2\right)^8=3^{3.5}.7^{2.8}=3^{15}.7^{16}\)
Vì \(15< 16\)\(\Rightarrow7^{15}< 7^{16}\)
\(\Rightarrow3^{15}.7^{15}< 3^{15}.7^{16}\)\(\Rightarrow21^{15}< 27^5.49^8\)
\(3^{2x+2}=9^{x+3}\)
\(\Rightarrow3^{2x+2}=3^{2x+6}\)
\(\Rightarrow2x+6=2x+2\)
\(\Rightarrow\left(2x-2x\right)+\left(6-2\right)=0\)
\(\Rightarrow0x=-4\left(loại\right)\)
\(b,\left(x-3\right)^4=\left(x-3\right)^6\)
\(\Rightarrow\left(x-3\right)^4-\left(x-3\right)^4.\left(x-3\right)^2=0\)
\(\Rightarrow\left(x-3\right)^4.\left[1-\left(x-3\right)^2\right]=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-3\right)^4=0\\1-\left(x-3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\x-3\in\left\{\pm1\right\}\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\x\in\left\{4;2\right\}\end{cases}\Rightarrow}x\in\left\{2;3;4\right\}}\)
a, => 32x+2 =32.(x+3)
2x+2=2.(x+3)
2(x+1)=2(x+3)
x+1=x+3
=> x= rỗng
vậy............
c, x15-x2=0
x2(x13-1)=0
\(\orbr{\begin{cases}x^2=0\\x^{13}=0\end{cases}}< =>\orbr{\begin{cases}x=0\\x^{13}=1^{13}\end{cases}}< =>\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
vậy.........
\(A=1+6+6^2+...+6^{100}\)
\(6A=6+6^2+6^3+...+6^{101}\)
\(6A-A=\left(6+6^2+...+6^{101}\right)-\left(1+6+...+6^{100}\right)\)
\(5A=6^{101}-1\)
\(A=\frac{6^{101}-1}{5}\)
Hoàn toàn tương tự với các câu b) c)
\(A=1+6+6^2+6^3+...+6^{100}\)
\(6A=6+6^2+6^3+6^4+...+6^{101}\)
\(6A-A=\left(6+6^2+6^3+6^4+...+6^{101}\right)-\left(1+6+6^2+...+6^{100}\right)\)
\(5A=6^{101}-1\)
\(A=\frac{6^{101}-1}{5}\)
1/
a. \(x^3-2=25\)
\(x^3=25+2\)
\(x^3=27\)
\(\Rightarrow x=3\)
b.\(\left(x-3\right)^2=25\)
\(\left(x-3\right)^2=5^2\)
\(\Rightarrow x-3=5\)
\(\Rightarrow x=8\)
1,a, x^3-2=25 b, (x-3)^2=25 c, x^3-x^2=55 d,[(8.x-12):4].3^7=3^10
x^3=27 (x-3)^2=5^2 không có giá trị x (8.x-12):4=3^3
x^3=3^3 x-3=5 8.x-12=108
x=3 x=8 8.x=120
x=15
2, a, \(7^6:7^4+3^4.3^2-3^7:3\) b, 1736-(21-16).32+6.7^2 c,56.17+17.44-4^3.5+6.(3^2-2)
=\(7^2+3^6-3^6\) =1736-5.32+6.49 =17.(56+44)-320+42
=\(49\) =1736-160+294 =17.10-278
=1736+134 =170-278
=1870 =-108
d, 3.10^2-[1200-(4^2-2.3)^3]
=300-[1200-(16-6)^3]
=300-(1200-10^3)
=300-(1200-1000)
=300-200
=100
bài 8
c) chứng minh \(\overline{aaa}⋮37\)
ta có: \(aaa=a\cdot111\)
\(=a\cdot37\cdot3⋮37\)
\(\Rightarrow aaa⋮37\)
k mk nha
k mk nha.
#mon