Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Tìm số tự nhiên nhỏ nhất khác 0 mà chia hết cho cả 2,3,4,5 và 6 là số 60
số tự nhiên A chia cho 29 dư 5 nghĩa là A = 29p + 5 ( p ∈ N ) tương tự A = 31q + 28 ( q ∈ N ) nên
31q + 28 = 29p + 5 ở đây p > q vì nếu p ≤ q ta được 31q - 29 p + 23 = 0 là vô lý vì 31q - 29 p + 23 > 0 với giả thiết p ≤ q ( 29p ≤ 29q < 31q )
vậy p > q ta có 29 ( p - q ) = 23 + 2q vì A là nhỏ nhất nên với p, q ở trên thì p - q nhỏ nhất = 1 thay lại vào ta được q = ( 29 - 23 ) : 2 = 3 vậy p = 4 thay vào ta được A = 29. 4 + 5 = 121
Thử lại 121 = 31 . 3 + 28 thỏa mãn đề bài .
Gọi số tự nhiên đó là \(n\).
Ta có: \(n\)chia cho \(5\)dư \(3\)nên \(2\times n\)chia cho \(5\)dư \(6\)nên \(2\times n-1\)chia hết cho \(5\).
\(n\)chia cho \(9\)dư \(5\)nên \(2\times n\)chia cho \(9\)dư \(10\)nên \(2\times n-1\)chia hết cho \(9\).
Suy ra \(2\times n-1\)chia hết cho \(5\times9=45\).
\(800< n< 900\Leftrightarrow1599< 2\times n-1< 1799\)
Có \(1799=39\times45+44\)mà \(n\)lớn nhất nên \(2\times n-1=39\times45\Leftrightarrow n=878\).
ko trả lời linh tinh trên diễn đàn nếu trả lời linh tinh sẽ bị olm trừ điểm đấy
Gọi số cần tìm là A
vì số đó cộng 2 chia hết cho 5 nên số đó chia 5 dư 3
vì số đó cộng 4 chia hết cho 7 nên số đó chia 7 dư3
=>A:4;5;7 đều dư 3
=>A-3 chia hết cho 4;5;7
mà số nhỏ nhất có 3 chữ số chia hết cho 4;5;7 là 140
Thử lại 143 :4=35(dư3)
143:5=28(dư3)
143:7=20(dư 3)
(thỏa mãn đầu bài)
Vậy số cần tìm là 143
:)))^^^^
Muốn chia hết cho 2 và chia 5 dư 1 thì tận cùng phải là 6
Chia hết cho 8 -> chia hết cho 2 và 4 (1)
Chia hết cho 9 -> Tổng chia hết cho 9 = chia hết cho 3 (2)
Từ 1 và 2 ta có: Số cần tìm là số có 3 chữ số ( abc biết c = 6)
Ta tìm dược số 756 ( đều thỏa mãn các ý trên và chia hết cho 7)
756 nha bạn !!!