Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 4n-5 chia hết 13
=> 4n-5 thuộc B(13) = {13,26,39,...}
Với 4n-5 = 13 => 4n = 18 => n = 9/2 (loại vì n thuộc N)
với 4n-5 = 26 => 4n = 31 => n= 31/4 (loại)
Với 4n-5 = 39 => 4n = 44 => n=11 (t/m)
........
Vậy n = 11
\(\left(n+9\right)⋮\left(n+4\right)\)
=> \(\left(n+9\right)-\left(n+4\right)⋮\left(n+4\right)\)
=> \(\left(n+9-n-4\right)⋮\left(n+4\right)\)
=> \(5⋮\left(n+4\right)\)
=> \(n+4\inƯ\left(5\right)=\left\{1;5\right\}\)
tó có bảng sau
n+4 | 1 | 5 |
n | -3 loại |
1 |
vậy x\(\in\left\{1\right\}\)
Đễ nhưng quá nhiều không đủ kiên nhẫn để làm. Bạn đăng lần lượt thôi.
b) ( 2n + 9 ) chia hết cho ( n + 1 )
=> 2n + 2 + 7 chia hết cho ( n + 1 )
=> 2 . ( n + 1 ) chia hết cho ( n + 1 ) mà 2 . ( n + 1 ) chia hết cho ( n + 1 )
=> 7 chia hết cho ( n + 1 ) => ( n + 1 ) thuộc Ư ( 7 ) = { 1 , 7 }
Vậy n thuộc { 1 , 7 }
a)
\(n+3⋮n-1\Leftrightarrow\left(n-1\right)+4⋮n-1\)
\(\Rightarrow4⋮n-1\) (vì n-1 chia hết cho n-1)
\(\Rightarrow n-1\inƯ\left(4\right)=\left\{1;2;4\right\}\)
\(n-1=1\Rightarrow n=2\)
\(n-1=2\Rightarrow n=3\)
\(n-1=4\Rightarrow n=5\)
Vậy \(n\in\left\{2;3;5\right\}\)
g 7n chia het n-3
<=> 7n -21+21 chia het n-3
<=> 7(n-3) +21 chia het n-3
<=> 21 chia het n-3 (vi 7.(n-3) chia het cho n-3)
=> n-3 thuoc uoc cua 21
U(21) ={1;3;7;21}
=>n-3 thuoc{1;3;7;21}
n thuoc {4;6;10;24}
2n+ 18 \(⋮\) 2n+5
=> \(\left(2n+18\right)-\left(2n+5\right)⋮\left(2n+5\right)\)
=> \(\left(2n+18-2n-5\right)⋮\left(2n+5\right)\)
=> \(13⋮\left(2n+5\right)\)
=> \(\left(2n+5\right)\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
ta có bảng sau
vây n \(\in\left\{-9;-3;-2;4\right\}\)