Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=2.2^2+3.2^3+...+n.2^n=2^{n+11}
S=2S-S=(2.2^3+3.2^4+4.2^5+...+n.2^{n+1})-(2.2^2+3.2^3+4.2^4+...+n.2^n)
S=n.2^{n+1}-2^3-(2^3+2^4+...+2^{n-1}+2^n)
Dat T=2^3+2^4+...+2^{n-1}+2^n
Ta tinh dc: T=2T-T=2^{n-1}-2^3
S=n.2^{n+1}-2^3-2^{n-1}+2^3=(n-1).2^{n+1}
=> (n-1).2^{n+1}=n^{n+11}
=> n-1=2^{10}
=> n=2^{10}+1
=> n=1024+1
=> n = 1025
Đặt \(A=2.2^2+3.2^3+4.2^4+...+n.2^n\)
=>\(2.A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)
=>\(A-2A=2.2^2+3.2^3+4.2^4+...+n.2^n-2.2^3-3.2^4-4.2^5-...-n.2^{n+1}\)
=>\(-A=2.2^2+\left(3.2^3-2.2^3\right)+\left(4.2^4-3.2^4\right)+...+\left(n.2^n-\left(n-1\right).2^n\right)-n.2^{n+1}\)
=>\(-A=2^3+2^3+2^4+...+2^n-n.2^{n+1}\)
=>\(-A=2^3+\left(2^3+2^4+...+2^n\right)-n.2^{n+1}\)
=>\(A=n.2^{n+1}-2^3-\left(2^3+2^4+...+2^n\right)\)
Đặt \(B=2^3+2^4+...+2^n\)
=>\(2.B=2^4+2^5+...+2^{n+1}\)
=>\(2.B-B=2^4+2^5+...+2^{n+1}-2^3-2^4-...-2^n\)
=>\(B=2^{n+1}-2^3\)
Lại có:\(A=n.2^{n+1}-2^3-\left(2^3+2^4+...+2^n\right)\)
=>\(A=n.2^{n+1}-2^3-B\)
=>\(A=n.2^{n+1}-2^3-\left(2^{n+1}-2^3\right)\)
=>\(A=n.2^{n+1}-2^3-2^{n+1}+2^3\)
=>\(A=n.2^{n+1}-2^{n+1}\)
=>\(A=\left(n-1\right).2^{n+1}\)
Mà \(A=2.2^2+3.2^3+4.2^4+...+n.2^n=2^{n+10}\)
=>\(\left(n-1\right).2^{n+1}=2^{n+10}\)
=>\(n-1=2^{n+10}:2^{n+1}\)
=>\(n-1=2^{n+10-n-1}\)
=>\(n-1=2^9\)
=>\(n-1=512\)
=>\(n=513\)
Vậy n=513
dài thế hình như cô giáo lớp mình giải còn ngắn hơn thế này
Đặt \(A=2.2^2+3.2^3+4.2^4+...+n.2^n\)
\(\Leftrightarrow2A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)
\(\Leftrightarrow2A-A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}-\left(2.2^2+3.2^3+4.2^4+...+n.2^n\right)\)
\(\Leftrightarrow A=-2.2^2-2^3-2^4-....-2^n+n.2^{n+1}\)
\(\Leftrightarrow A=-2^{n+1}+n.2^{n+1}=\left(n-1\right).2^{n+1}\)
mà \(A=2^{n+11}\) \(\Leftrightarrow\left(n-1\right).2^{n+1}=2^{n+11}\)
\(\Leftrightarrow\left(n-1\right).2^n.2=2^n.2^{11}\)
\(\Leftrightarrow\left(n-1\right)=2^{10}\)
\(\Leftrightarrow n=2^{10}+1\)