K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2019

\(n+4⋮n+1\)

\(\Rightarrow n+1+3⋮n+1\)

\(\Rightarrow3⋮n+1\)

\(\Rightarrow n+1\inƯ\left(3\right)\)

\(\RightarrowƯ\left(3\right)=\left\{1;3\right\}\)

Ta có: \(n+1=1\Rightarrow n=0\)

          \(n+1=3\Rightarrow n=2\)

\(\Rightarrow n\in\left\{0;2\right\}\)

2 tháng 11 2019

\(n+6⋮n-1\)

\(\Rightarrow n-1+7⋮n-1\)

\(\Rightarrow7⋮n-1\)

\(\Rightarrow n-1\inƯ\left(7\right)\)

\(\RightarrowƯ\left(7\right)=\left\{1;7\right\}\)

Ta có: \(n-1=1\Rightarrow n=0\)

          \(n-1=7\Rightarrow n=8\)

\(\Rightarrow n\in\left\{0;8\right\}\)

29 tháng 7 2017

1) => n thuộc Ư(4)={1,2,4}

Vậy n = {1,2,4}

2) \(\frac{6}{n+1}\)

=> n+1 thuộc Ư(6)={1,2,3,6}

Ta có bảng :

n+11236
n0125

Vậy n={0,1,2,5}

3) =>n thuộc Ư(8)={1,2,4,8}

Vậy n n={1,2,4,8}

4)\(\frac{n+3}{n}=\frac{n}{n}+\frac{3}{n}=1+\frac{3}{n}\)

=> n thuộc Ư(3)={1,3}

Vậy n = {1,3}

5) \(\frac{n+6}{n+1}=\frac{n+1+5}{n+1}=\frac{n+1}{n+1}+\frac{5}{n+1}=1+\frac{5}{n+1}\)

=> n+1 thuộc Ư(5) = {1,5}

Ta có : n+1=1

n = 1-1

n=0

Và n+1=5

n=5-1

n=4 

Vậy n = 4

1 tháng 8 2015

1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6

Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60

n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)

n chia hết cho 7 => 60k + 1 chia hết cho 7

<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)

<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)

Vậy k nhỏ nhất là 5

Thế vào (*): n = 301 thỏa mãn

2. a) n = 25k - 1 chia hết cho 9

<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)

<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)

Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4

Thế vào trên được n = 99 thỏa mãn

b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21

Vậy không có n thỏa mãn

c) Đặt n = 9k

9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)

<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)

9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)

Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)

<=> a + 1 ≡ 0 (mod 4) (*)

Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn

Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D

13 tháng 10 2015

1. n = 301

2.a) n = 99

b) không có

c) n = 774

14 tháng 11 2018

\(b,n+2⋮n-1\)

\(\Rightarrow n-1+1⋮n-1\)

\(\Rightarrow1⋮n-1\Rightarrow n-1\inƯ\left(1\right)=\left\{1;-1\right\}\)

vs : n - 1 =  1 => n = 2 

    n - 1 = -1 => n = 0 

25 tháng 10 2018

Để n+4 chia hết cho n+1

=>n+1/n+1+3/n+1

=>n+1 thuộc ước của 3

=>       -     n+1= 1                        =>n=0

           -     n+1=-1                            n=-2(loại)

          -     n+1=3                             n=2  

          -    n+1=-3                             n=-4(loại)

Vậy n=0 và n=2      

25 tháng 10 2018

\(n+4⋮n+1\)

\(n+4=n+1+3⋮n +1\)

              mà \(n+1⋮n+1\)

\(\Rightarrow3⋮n+1\)

\(\Rightarrow n+1\inƯ\left(3\right)\)

             n+1                         1                                   2                            3          
             n                   0                   1          2

Vậy \(n\in\left\{0;1;2\right\}\)

nếu sai thì cho mk xin lỗi

13 tháng 11 2018

1)2n+5-2n-1

=>4 chia hết cho 2n-1

ước của 4 là 1 2 4

2n-1=1=>n=.....

tiếp với 2 và 4 nhé