Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 62 = 36 = 22 x 32
Số ước của 3n x 22 x 32 = (n + 1) x (2 + 1) x (2 + 1) = 21
=> (n+1) x 3 x 3 = 21
=> (n + 1) x 9 = 21
=> n + 1 = \(\frac{7}{3}\)
=> n = \(\frac{4}{3}\)
Bài 4:
$A+2=1+2+2^2+2^3+...+2^{11}$
$=(1+2)+(2^2+2^3)+....+(2^{10}+2^{11})$
$=(1+2)+2^2(1+2)+....+2^{10}(1+2)$
$=(1+2)(1+2^2+....+2^{10})$
$=3(1+2^2+...+2^{10})\vdots 3$
Vậy $A+2\vdots 3$ nên $A$ không chia hết cho $3$
Bài 5:
$n^2+n+1=n(n+1)+1$
Vì $n,n+1$ là hai số tự nhiên liên tiếp nên sẽ tồn tại một số chẵn và 1 số lẻ
$\Rightarrow n(n+1)$ chẵn
$\Rightarrow n^2+n+1=n(n+1)+1$ lẻ (điều phải chứng minh)
5n+11 chia hết (n+1)
=>5n+5+6 chia hết (n+1)
=>5(n+1)+6 chia hết cho (n+1)
vì (n+1) chia hết cho (n+1)=> 5(n+1) chia hết cho (n+1)
do vậy để 5(n+1)+6 chia hết cho (n+1) thì 6 phải chia hết cho (n+1)
=> (n+1) phải là ước của 6
U(6)={-6,-3,-2,-1,1,2,3,6}
=> n={-7,-4,-3,-2,0,1,2,5}
Vì n tự nhiện=> n={0,1,2,5}
5n+11 chia hết cho n+1
Mà n+1 chia hết cho n+1
=>(5n+11)-5(n+1)
=>5n+11-(5n+5)
=>6 chia hết cho n+1
=>n+1 thuộc Ư(6)
=>n+1 thuộc{1,2,3,6}
=>n thuộc {0,1,2,5}
Gọi tổng 3 số tự nhiên liên tiếp là : a;a+1;a+2
=> a+(a+1)+(a+2) = 3a + 3 chia hết cho 3
=> đpcm
Chứng minh rằng mọi phân số có dạng:
a)n+1/2n+3 (n là số tự nhiên)
b)2n+3/3n+5 ( n là số tự nhiên) đều là phân số tối giản
Ta có:4n-5=4n+2-7=2(2n+1)-7
Để 4n-5 chia hết cho 2n+1 thì 7 chia hết cho 2n+1
=>2n+1\(\in\)Ư(7)={-7,-1,1,7)
=>2n\(\in\){-8,-2,0,6}
=>n\(\in\){-4,-1,0,3}
n + 36 = n - 1 + 37
Để n+ 36 chia hết cho n-1 thì 37 chia hết cho n-1
=> n-1 thuộc tập cộng trừ 1, cộng trừ 37
kẻ bảng => n = 2; 0; 38; -36
Ta có:
n+36=(n-1)+37
mà n-1 chia hết cho n-1=>37 cũng phải chia hết cho n-1
=>n-1 thuộc Ư(37)={1;37} nên x thuộc{2;38}