Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(n+15⋮n-3\)
\(\Rightarrow\left(n-3\right)+18⋮n-3\)
\(\Rightarrow18⋮n-3\)(vì \(n-3⋮n-3\))
\(\Rightarrow n-3\inƯ\left(18\right)\)
\(\Rightarrow n-3\in\left\{1;2;3;6;9;18\right\}\)
\(\Rightarrow n\in\left\{4;5;6;9;12;21\right\}\)
Do n > 5 nên:
\(\Rightarrow x\in\left\{6;9;12;21\right\}\)
a, 2n+1 chia hết cho 21=>21 thuộc Ư(2n+1)
=>2n+1 thuộc {1,3,7,21}
2n+1 | 1 | 3 | 7 | 21 |
n | 0 | 1 | 3 | 10 |
Vậy n thuộc{0,1,3,10}
Bài 1 .
a) Gọi d \(\in\)ƯC ( n + 1 , 2n + 3 ) . Ta có :
2n + 3 - 2( n + 1 ) \(⋮\)cho d
\(\Rightarrow\)1 chia hết cho d => d = + , - 1
b ) Gọi d \(\in\)ƯC ( 2n + 3 , 4n + 8 ) . Ta có :
4n + 8 - 2( 2n + 3 ) \(⋮\)cho d
\(\Rightarrow\)2 chia hết cho d . Do đó d là Ư của số lẻ 2n + 3 nên d = + , - 1
c ) Xét buểu thức 5( 3n + 2 ) - 3( 5n + 3 ).
a) Gọi d ϵ ƯCLN( n+5, n+1)
⇒ n+5 ⋮ d
⇒ n+1 ⋮ d
⇒ ( n+5)-(n+1) ⋮ d
⇒ 4 ⋮ d
⇒ d ∈ ƯC(4)
⇒ d ∈ ( 1,2,4)
Vì n+5 và n+1 là số lẻ
⇒ ta loại 2,4
⇒ 1 ⋮ d
⇒ phân số n+5/n+1 là phân số tối giản
a) n+15 chia hết cho n-3
=> n-3+18 chia hết cho n-3
Vì n-3+18 chia hết cho n-3; n-3 chia hết cho n-3 nên 18 chia hết cho n-3
=> n-3 thuộc Ư(18)
=> n-3 thuộc {1; 2; 3; 6; 9; 18}
Mà n > 5 nên n thuộc {6; 9; 18}
Câu b; c tương tự
a. n+15 chia het cho n-3 (voi n>5)
suy ra :\(\frac{n+15}{n+3}=\frac{n-3+18}{n-3}=1+\frac{18}{n-3}\)chia het cho n-3 thi 18 chia het cho n-3
suy ra n-3 thuoc uoc cua 18={1;2;3;9;18} ma n-3>5 nen n thuoc {6;9;18}
cac cau con lai lam tuong tu