Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1:
28=256
2.53=2.125=250
vì 256 > 250 nên 28> 2.53
câu 2:
a.3n: 9=243
a.3n= 243 : 9
a.3n=27.........(đến đây thì (@_@))
b) n= 3 hoặc 4.
Viết tập hợp các số tự nhiên x biết :
a) 25 \(\le\)5^x < 3125
<=> 5^2 \(\le\)5^x < 5^5
=> 2 \(\le\)x < 5
<=> 2 \(\le\)2 ; 3 ; 4 < 5
Vậy x € { 2 ; 3 ; 4 }
b , 9 < 3^x \(\le\)243
<=> 3^2 < 3^x \(\le\)3^5
=> 2 < x \(\le\) 5
<=> 2 < 3 ; 4 ; 5 \(\le\)5
Vậy x € { 3; 4 ; 5 }
c) 9 < 3^x < 27
<=> 3^2 < 3^x < 3^3
=> 2 < x < 3 ( vô lý )
Vậy không có giá trị x nào thõa mãn đề bài
Tính tổng :
S = 1 + 2 + 2^2 + .... + 2^10
2S = 2 + 2^2 + 2^3 + ... + 2^11
2S - S = ( 2 + 2^2 + 2^3 + ....+ 2^11 ) - ( 1 + 2 + 2^2 + .... + 2^10 )
S = 2^11 - 1
S = 1 + 3 + 3^2 + .... + 3^6
3S = 3 + 3^2 + 3^3 + .... + 3^7
3S - S = ( 3 + 3^2+ 3^3 + ... + 3^7 ) - ( 1 + 3 + 3^2 + .... + 3^6 )
2S = 3^7 - 1
S = 3^7 - 1 / 2
Mình làm phần chữ số tận cùng nhé :
1) Ta có : 210+1 = 1024 + 1 = 1025 Vậy nó có chữ số tận cùng là 5.
2) Ta có : 5n ( n là STN) = (....5)
=> 510 = (.....5)
=> 2 . 510 = 2. (.....5) = (.......0)
Vậy biểu thức đã cho có chữ số tậ cùng là 0
a) \(9< 3^x< 243\)
\(\Leftrightarrow3^2< 3^x< 3^5\)
\(\Rightarrow x\in\left\{3;4\right\}\)
b) Sửa đề: \(3^4.3^x\div9=27\)
\(\Leftrightarrow3^{x+4}=3\)
\(\Rightarrow x+4=1\)
\(\Rightarrow x=-3\)
c) \(3^x\div3^2=243\)
\(\Leftrightarrow3^{x-2}=3^5\)
\(\Rightarrow x-2=5\)
\(\Rightarrow x=7\)
d) \(25< 5^x< 3125\)
\(\Leftrightarrow5^2< 5^x< 5^5\)
\(\Rightarrow x\in\left\{3;4\right\}\)
e) \(2^x-64=2^6\)
\(\Leftrightarrow2^x=64+64=128\)
\(\Leftrightarrow2^x=2^7\)
\(\Rightarrow x=7\)
f) \(2^x\div16=128\)
\(\Leftrightarrow2^x=2^7.2^4\)
\(\Leftrightarrow2^x=2^{11}\)
\(\Rightarrow x=11\)
a) 27. 3n=243. 3n
=243:27
=9. có 3n
=9=32.
=>3n=32. => n=2.
So sánh
1. \(2^{30}\)và \(3^{20}\)
\(2^{30}=\left(2^3\right)^{10}=8^{10}\)
\(3^{20}=\left(3^2\right)^{10}=9^{10}\)
Vì \(8^{10}< 9^{10}\)
Nên \(2^{30}< 3^{20}\)
2. \(10^{20}\)và \(90^{10}\)
\(10^{20}=\left(10^2\right)^{10}=100^{10}\)
\(90^{10}\)
Vì \(100^{10}>90^{10}\)
Nên \(10^{20}>90^{10}\)
a) Ta có: \(256< 2^n< 1024\)
\(\Leftrightarrow2^8< 2^n< 2^{10}\)
\(\Rightarrow8< n< 10\)
\(\Rightarrow n=10\)
Vậy \(n=10\)
b) Ta có: \(27< 3^n< 243\)
\(\Leftrightarrow3^3< 3^n< 3^5\)
\(\Rightarrow3< n< 5\)
\(\Rightarrow n=4\)
Vậy \(n=4\)
c) Ta có: \(16< 4^n< 256\)
\(\Leftrightarrow4^2< 4^n< 4^4\)
\(\Rightarrow2< n< 4\)
\(\Rightarrow n=3\)
Vậy \(n=3\)
d) Ta có: \(125< 5^n< 3125\)
\(\Leftrightarrow5^3< 5^n< 5^5\)
\(\Rightarrow3< n< 5\)
\(\Rightarrow n=4\)
Vậy n=4
a) \(256< 2^n< 1024\)
Ta có : \(2^8< 2^n< 2^{10}\)
Vậy n = 9
b) \(27< 3^n< 243\)
Ta có : \(3^3< 3^n< 3^5\)
Vậy n = 4
c) \(16< 4^n< 256\)
Ta có : \(4^2< 4^n< 4^4\)
Vậy n = 3
d) \(125< 5^n< 3125\)
Ta có : \(5^3< 5^n< 5^5\)
Vậy n = 4
3n:32=243
3n:32=35
3n=35x32
3n=37
=>n=7
a)\(\frac{3^n}{3^2}=243\)
\(3^{n-2}=243\)
\(3^{n-2}=3^5\)
\(\Rightarrow n=7\)