Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có: 2n+9 chia hết n+3
<=>(2n+9)-2(n+3) chia hết n+3
<=>(2n+9)-(2n+6) chia hết n+3
<=>3 chia hết n+3
<=>n+3 thuộc {1;3}
<=>n=0
Vậy n = 0
b) Ta có 3n-1 chia hết cho 3-2n
=> 6n-2 chia hết cho 3-2n
=> 3(3-2n)-11 chia hết cho 3-2n
=> 11 chia hết cho 3-2n
=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}
• 3-2n=1 => n=1
• 3-2n=11=> n ko là số tự nhiên
Vậy n=1
c) (15 - 4n) chia hết cho n
=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}
d) n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5
e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 =
13n−1−213n-1-2
=> n-1 là ước dương của 13
=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13
=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12
Mà n thuộc N và n<8 => n=0 hoặc n=2
g)
6n+9⋮4n−16n+9⋮4n−1
⇒2.(6n+9)⋮4n−1⇒2.(6n+9)⋮4n−1
⇒12n+18⋮4n−1⇒12n+18⋮4n−1
⇒12n−3+21⋮4n−1⇒12n−3+21⋮4n−1
⇒3.(4n−1)+21⋮4n−1⇒3.(4n−1)+21⋮4n−1
Vì 3.(4n−1)⋮4n−1⇒21⋮4n−13.(4n−1)⋮4n−1⇒21⋮4n−1
Mà 4n - 1 chia 4 dư 3; 4n−1≥−14n−1≥−1 do n∈Nn∈N
⇒4n−1∈{−1;3;7}⇒4n−1∈{−1;3;7}
⇒4n∈{0;4;8}⇒4n∈{0;4;8}
⇒n∈{0;1;2}
a)<=>(n-1)+4 chia hết n-1
=>4 chia hết n-1
=>n-1\(\in\){1,-1,2,-2,4,-4}
=>n\(\in\){2,0,3,-1,5,-3}
b)2(2n+1)+2 chia hết 2n+1
=>2 chia hết 2n+1
=>2n+1\(\in\){1,-1,2,-2}
=>n\(\in\){1,-3,3,-5}
a)<=>(n-1)+4 chia hết n-1
=>4 chia hết n-1
=>n-1\(\in\){1,-1,2,-2,4,-4}
=>n\(\in\){2,0,3,-1,5,-3}
b)2(2n+1)+2 chia hết 2n+1
=>2 chia hết 2n+1
=>2n+1\(\in\){1,-1,2,-2}
=>n\(\in\){1,-3,3,-5}
a) (n+3) Chia hết cho (n-1)
Ta có : (n+3)=(n-1)+4
Vì (n-1) chia hết cho (n-1)
Nên (n+3) chia hết cho (n-1) thì 4 chia hết cho (n-1)
=> n-1 thuộc Ư(4)={1;2;4}
n-1 1 2 4
n 2 3 5
Vậy n thuộc {2;3;5 } thì (n+3) chia hết cho (n-1)
b)(4n+3) chia hết cho (2n+1)
Ta có : (4n+3)=2n.2+1+2
Vì (2n+1) chia hết cho (2n+1)
Nên (4n+3) chia hết cho (2n+1) thì 3 chia hết cho (2n+1)
=> 2n+1 thuộc Ư(3)={1;3}
2n+1 1 3
2n 0 2
n 0 1
Vậy n thuộc {0;1} thì (4n+3) chia hết cho (2n+1)
Viết thế này dễ nhìn nefk (n+2)/(n-1) =(n-1+3)/(n-1)
=1+3/(n-1) vì n+2 chia cho n-1 =1 dư 3/(n-1)
để n+2 chia hết cho n-1 thì 3/(n-1) là số nguyên
3/(n-1) nguyên khi (n-1) là Ước của 3
khi (n-1) ∈ {±1 ; ±3}
xét TH thôi :
n-1=1 =>n=2 (tm)
n-1=-1=>n=0 (tm)
n-1=3=>n=4 (tm)
n-1=-3=>n=-2 (loại) vì n ∈N
Vậy tại n={0;2;4) thì n+2 chia hết cho n-1
--------------------------------------...
b, (2n+7)/(n+1)=(2n+2+5)/(n+1)=[2(n+1)+5]/(...
2n+7 chia hêt cho n+1 khi 5/(n+1) là số nguyên
khi n+1 ∈ Ước của 5
khi n+1 ∈ {±1 ;±5} mà n ∈N => n ≥0 => n+1 ≥1
vậy n+1 ∈ {1;5}
Xét TH
n+1=1=>n=0 (tm)
n+1=5>n=4(tm)
Vâyj tại n={0;4) thì 2n+7 chia hêt scho n+1
d))Vì 3n chia hết cho 5-2n
=>2.3n+3(5-2n)=15 chia hết cho 5-2n
=>5-2n thuộc Ư(15)={±1;±3;±5;±15}
Mặt khác:5-2n≤5(do n≥0)
=>5-2n thuộc {-15;-5;-3;-1;1;3;5}
=>n thuộc {10;5;4;3;2;1;0}
)Vì 3n chia hết cho 5-2n
=>2.3n+3(5-2n)=15 chia hết cho 5-2n
=>5-2n thuộc Ư(15)={±1;±3;±5;±15}
Mặt khác:5-2n≤5(do n≥0)
=>5-2n thuộc {-15;-5;-3;-1;1;3;5}
=>n thuộc {10;5;4;3;2;1;0}
bạn có thể làm theo cách khác ko vì mình chưa học tới số nguyên hay ước và bội
n+3 chia hết cho n-1
=>n-1+4 chia hết cho n-1
=>4 chia hết cho n-1
=> n-1 chia hết cho Ư(4)={1;-1;2;-2;4;-4}
=> n thuộc {2;0;3;-1;5;-3}
Mà n thuộc N
=> n thuộc {2;0;3;5}
b, 4n+3 chia hết cho 2n+1
=>4n+2+1 chia hết cho 2n+1
=>2(2n+1)+1 chia hết cho 2n+1
=>1 chia hết cho 2n+1
=>2n+1 thuộc Ư(1)={1;-1}
=>n thuộc {0;-1}
Mà n thuộc N
=> n=0
4n+3 chia hết cho 2n+1
=>2(2n+1)+1 chia hết cho 2n+1
=>2n+1=1
=>2n=0
=>n=0
a) n+3 chia hết cho n-1
=>(n-1)+4 chia hết cho n-1
=>n-1 thuộc U(4)={-1;1;-2;2;-4;4}
n-1=1=>n=2
n-1=-1=>n=0
n-1=2=>n=3
n-1=-2=>n=-1
n-1=4=>n=5
n-1=-4=>n=-3
vì n EN nên nE{0;1;3;5}
b) 4n+3 chia hết cho 2n+1
=>2(2n+1)+1 chia hết cho 2n+1
=>1 chía hết cho 2n+1
=>2n+1=1
=>2n=0
=>n=0
a) n + 3 chia hết cho n - 1
n -1 + 4 chia hết cho n - 1
Mà n - 1 chia hết cho n - 1
4 chia hết cho n - 1
n - 1 thuộc Ư(4)
Mà n là số tự nhiên
=> n thuộc {0 ' 2 ; 3 ; 5}