Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (n+2) chia hết cho n-1
(n+2)=[(n+1)+1][(n+1)+1]⋮⋮ 1
vì n+1⋮⋮n+1 nên 1⋮⋮n+1
⇒⇒n+1∈∈Ư(1)=(±±1)
n+1=1⇒⇒n=0
n+1=-1⇒⇒n=-2
Ta có:
\(\dfrac{n+2}{n-1}=\dfrac{n-1+3}{n-1}=1+\dfrac{3}{n-1}\)
Để (n + 2) \(⋮\) (n - 1) thì 3 \(⋮\) (n - 1)
\(\Rightarrow\) n - 1 = 1; n - 1 = -1; n - 1 = 3; n - 1 = -3
*) n - 1 = 1
n = 2
*) n - 1 = -1
n = 0
*) n - 1 = 3
n = 4
*) n - 1 = -3
n = -2
Vậy n = 4; n = 2; n = 0; n = -2
n+1 chia hết cho n-3
=> n-3+4 chia hết cho n-3
=> n-3 chia hết cho n-3 ; 4 chia hết cho n-3
=> n-3 thuộc Ư(4)={-1,-2,-4,1,2,4}
=> n={2,1,-1,4,5,7}
1)2n+5-2n-1
=>4 chia hết cho 2n-1
ước của 4 là 1 2 4
2n-1=1=>n=.....
tiếp với 2 và 4 nhé
n + 5 chia hết cho n + 1
n + 1 + 4 chia hết cho n + 1
4 chia hết cho n + 1
n + 1 thuộc Ư(4) = [1;2;4}
n thuộc {0 ; 1 ; 3}
Giải:
Vì n chia cho 8 thì dư 7 => n - 7 chia hết cho 8
=> n - 7 + 8 chia hết cho 8
=> n + 1 chia hết cho 8
=> n + 1 + 64 chia hết cho 8
=> n + 65 chia hết cho 8 (1)
Vì n chia cho 31 thì dư 28 => n - 28 chia hết cho 31
=> n - 28 + 31 chia hết cho 31
=> n + 3 chia hết cho 31
=> n + 3 + 62 chia hết cho 31
=> n + 65 chia hết cho 31 (2)
Từ (1) và (2) => n + 65 chia hết cho 8,31
=> n + 65 chia hết cho BCNN (8;31)
=> n + 65 chia hết cho 248
Vì \(n\le999\rightarrow n+65\le999+65=1064\)
Theo đề bài ta có n là số tự nhiên nên ta có: \(248k\le999\)(k lớn nhất)
=> k = 4
n + 65 = 248k => n + 65 = 992
=> n = 992 - 65 = 927
\(3n-3+5⋮n-1\)
\(\Leftrightarrow3\left(n-1\right)+5⋮n-1\)
có 3(n-1) chia hết cho n-1
\(\Rightarrow5⋮n-1\)
=> n-1 thuộc ước của 5
tức là:
n-1=5
n-1=-5
n-1=1
n-1=-1
Ta có: n+1 chia hết cho 165
=> n+1 thuộc B(165) = { 0 ; 165;330;495;660.....}
=> n = { -1 ; 164 ; 329 ; 494;659;............}
Vì n chia hết cho 21
=> n =
bạn phải k thì mình trả lời
n + 5 chia hết n - 1
n - 1 + 6 chia hết cho n - 1
Suy ra 6 chia hết n - 1
=> n - 1 \(\in\left\{1;2;3;6\right\}\)
=> n \(\in\left\{2;3;4;7\right\}\)